Answer:
Transverse
Explanation:
There are two types of waves, according to the direction of their oscillation:
- Transverse waves: in a transverse wave, the direction of the oscillation is perpendicular to the direction of motion of the wave. Examples of transverse waves are electromagnetic waves
- Longitudinal waves: in a longitudinal wave, the direction of the oscillation is parallel to the direction of motion of the wave. Examples of longitudinal waves are sound waves.
Light waves corresponds to the visible part of the electromagnetic spectrum, which includes all the different types of electromagnetic waves (which consist of oscillations of electric and magnetic fields that are perpendicular to the direction of propagation of the wave): therefore, they are transverse waves.
Answer:
a)N = 3.125 * 10¹¹
b) I(avg) = 2.5 × 10⁻⁵A
c)P(avg) = 1250W
d)P = 2.5 × 10⁷W
Explanation:
Given that,
pulse current is 0.50 A
duration of pulse Δt = 0.1 × 10⁻⁶s
a) The number of particles equal to the amount of charge in a single pulse divided by the charge of a single particles
N = Δq/e
charge is given by Δq = IΔt
so,
N = IΔt / e

N = 3.125 * 10¹¹
b) Q = nqt
where q is the charge of 1puse
n = number of pulse
the average current is given as I(avg) = Q/t
I(avg) = nq
I(avg) = nIΔt
= (500)(0.5)(0.1 × 10⁻⁶)
= 2.5 × 10⁻⁵A
C) If the electrons are accelerated to an energy of 50 MeV, the acceleration voltage must,
eV = K
V = K/e
the power is given by
P = IV
P(avg) = I(avg)K / e

= 1250W
d) Final peak=
P= Ik/e
= 
P = 2.5 × 10⁷W
Answer:
a = 2.94 m/s²
Explanation:
In order for the cup not to slip, the unbalanced force on cup must be equal to the frictional force:
Unbalanced Force = Frictional Force
ma = μR = μW
ma = μmg
a = μg
where,
a = maximum acceleration for the cup not to slip = ?
μ = coefficient of static friction = 0.3
g = acceleration due to gravity = 9.8 m/s²
Therefore,
a = (0.3)(9.8 m/s²)
<u>a = 2.94 m/s²</u>