Answer:
The mass number is the sum of protons and neutrons. This means to find the number of neutrons you subtract the number of protons from the mass number. On the periodic table, the atomic number is the number of protons, and the atomic mass is the mass number.
Explanation:
Answer: 1.99 x 10²² molecules H2
Explanation:First we will solve for the moles of H2 using Ideal gas law PV= nRT then derive for moles ( n ).
At STP, pressure is equal to 1 atm and Temperature is 273 K.
Convert volume in mL to L:
750 mL x 1 L / 1000 mL
= 0.75 mL
n = PV/ RT
= 1 atm ( 0.75 L ) / 0.0821 L.atm/ mole.K ( 273 K)
= 3.3x10-² moles H2
Convert moles of H2 to atoms using Avogadro's Number.
3.3x10-² moles H2/ 6.022x10²³ atoms H2 / 1 mole H2
= 1.99x10²² atoms H2
Answer:
Chlorine
Explanation:
Even though chlorine is highly electronegative, the best answer is no, and in this class we will consider chlorine not to form hydrogen bonds (even though it has the same electronegativity as oxygen). This is because chlorine is large and its lone electron is in a diffuse orbital, covering a large area, and thus do not have the high charge density to act as a strong hydrogen bond acceptor. But it does form weak hydrogen bonds in solid crystalline hydrogen chloride at very low temperatures.
<u>Answer:</u> The volume of balloon at 100°C is 4.46 L
<u>Explanation:</u>
To calculate the final temperature of the system, we use the equation given by Charles' Law. This law states that volume of the gas is directly proportional to the temperature of the gas at constant pressure.
Mathematically,

where,
are the initial volume and temperature of the gas.
are the final volume and temperature of the gas.
We are given:

Putting values in above equation, we get:

Hence, the volume of balloon at 100°C is 4.46 L
Answer:
2.5 moles of H2
Explanation:
First, let us write a balanced equation for the reaction of Hydrogen to produce water. This is shown below:
2H2 + O2 —> 2H2O
From the equation above,
2 moles of H2 produced 2 moles of H2O.
Therefore, 2.5 moles of H2 will produce 2.5 moles of H2O