Answer:
d = 0.793 g/L
Explanation:
Given data:
Density of fluorine gas = ?
Pressure of gas = 0.554 atm
Temperature of gas = 50 °C (50+273.15K = 323.15 K)
Solution:
Formula:
PM = dRT
M = molar mass of gas
P = pressure
R = general gas constant
T = temperature
d = PM/RT
d = 0.554 atm × 37.99 g/mol / 0.0821 atm.L /mol.K × 323.15 K
d = 21.05 atm.g/mol/26.53 atm.L /mol
d = 0.793 g/L
it can influence the temperature which affects the climate and climate affects weather
Answer:
The right solution is "-602.69 KJ heat".
Explanation:
According to the question,
The 100.0 g of carbon dioxide:
=
=
We know that 16 moles of formation associates with -11018 kJ of heat, then
0.8747 moles formation associates with,
=
=
=
3 L will be the final volume for the gas as per Charle's law.
Answer:
Explanation:
The kinetic theory of gases has two significant law which forms the backdrop of motion of gases. They are Charle's law and Boyle's law. As per Charle's law, the volume of any gas molecule at constant pressure is directly proportional to the temperature of the molecule.
V∝ T
Since, here two volumes are given and at two different temperatures with constant pressure. Then as per Charle's law, the relation between the volumes of air at different temperature will be
So in this case, V1 = 6 L and T1 = 80° C. Similarly, T2 = 40° C. So we have to determine the V2.
So, 3 L will be the final volume for the gas as per Charle's law.
Answer:
387 g/mol
Explanation:
The molar mass is a ratio comparing a substance's mass and molar value. The specific ratio looks like this:
Molar Mass (g/mol) = mass (g) / moles
You can plug the given values into the ratio to find the molar mass.
Molar Mass = mass / moles
Molar Mass = 0.406 g / 0.00105 mol
Molar Mass = 387 g/mol