Well Thermal energy is an example of kinetic energy, as it is due to the motion of particles, with motion being the key. Thermal energy results in an object or a system having a temperature that can be measured. Thermal energy can be transferred from one object or system to another in the form of heat. While <span>Heat energy (or thermal energy or simply heat) is defined as a form of energy which transfers among particles in a substance (or system) by means of kinetic energy of those particles. In other words, under kinetic theory, the heat is transferred by particles bouncing into each other.</span>
Answer:
55 min
Explanation:
The missing question is: how long does the trip take?
First of all, we need to find the initial distance covered by Dylan. In the first part, he rides for

at a speed of
v = 15 mph
therefore, the distance he covered is

Then Dylan stopped for a time of

Finally, on the way back, Dylan covered again this distance but travelling at a new speed of
v = 10 mph
So, the time he took is

So, the total time of the trip was

Answer:
I know they are stable, have no electrical charge, have interactions with electrons.
Explanation:
Answer:
303.29N and 1.44m/s^2
Explanation:
Make sure to label each vector with none, mg, fk, a, FN or T
Given
Mass m = 68.0 kg
Angle θ = 15.0°
g = 9.8m/s^2
Coefficient of static friction μs = 0.50
Coefficient of kinetic friction μk =0.35
Solution
Vertically
N = mg - Fsinθ
Horizontally
Fs = F cos θ
μsN = Fcos θ
μs( mg- Fsinθ) = Fcos θ
μsmg - μsFsinθ = Fcos θ
μsmg = Fcos θ + μsFsinθ
F = μsmg/ cos θ + μs sinθ
F = 0.5×68×9.8/cos 15×0.5×sin15
F = 332.2/0.9659+0.5×0.2588
F =332.2/1.0953
F = 303.29N
Fnet = F - Fk
ma = F - μkN
a = F - μk( mg - Fsinθ)
a = 303.29 - 0.35(68.0 * 9.8- 303.29*sin15)/68.0
303.29-0.35( 666.4 - 303.29*0.2588)/68.0
303.29-0.35(666.4-78.491)/68.0
303.29-0.35(587.90)/68.0
(303.29-205.45)/68.0
97.83/68.0
a = 1.438m/s^2
a = 1.44m/s^2
Answer:
It's held together by the nuclear force.
Explanation:
There are <em>more</em> elemental forces than just the electromagnetic one. In this case, it is the nuclear force (called also strong force) the one that holds the nucleus together because it is stronger than the electromagnetic force over such short distances as the one inside the atomic nucleus.