Complete question:
A block of solid lead sits on a flat, level surface. Lead has a density of 1.13 x 104 kg/m3. The mass of the block is 20.0 kg. The amount of surface area of the block in contact with the surface is 2.03*10^-2*m2, What is the average pressure (in Pa) exerted on the surface by the block? Pa
Answer:
The average pressure exerted on the surface by the block is 9655.17 Pa
Explanation:
Given;
density of the lead, ρ = 1.13 x 10⁴ kg/m³
mass of the lead block, m = 20 kg
surface area of the area of the block, A = 2.03 x 10⁻² m²
Determine the force exerted on the surface by the block due to its weight;
F = mg
F = 20 x 9.8
F = 196 N
Determine the pressure exerted on the surface by the block
P = F / A
where;
P is the pressure
P = 196 / (2.03 x 10⁻²)
P = 9655.17 N/m²
P = 9655.17 Pa
Therefore, the average pressure exerted on the surface by the block is 9655.17 Pa
The biosphere contains all the planet's living things. This sphere includes all of the microorganisms, plants, and animals of Earth. Within the biosphere, living things form ecological communities based on the physical surroundings of an area. These communities are referred to as biomes. Deserts, grasslands, and tropical rainforests are three of the many types of biomes that exist within the biosphere.
The atmosphere contains all the air in Earth's system. It extends from less than 1 m below the planet's surface to more than 10,000 km above the planet's surface. The upper portion of the atmosphere protects the organisms of the biosphere from the sun's ultraviolet radiation. It also absorbs and emits heat. When air temperature in the lower portion of this sphere changes, weather occurs. As air in the lower atmosphere is heated or cooled, it moves around the planet. The result can be as simple as a breeze or as complex as a tornado.
Answer:
The blue light has the highest energy.
Explanation:
Body that is hot enough emits light as consequence of its temperature. For example, an iron bar in contact with fire will start to change colors as the temperature increases until it gets to a blue color. That its know as Wien's displacement law, which establishes that the peak of emission for the spectrum will be displaced to shorter wavelengths as the temperature increases.
The same scenario described above can be found in the star, a star with higher temperature will have a blue color and one with lower temperature will have a red color.
(1)
The energy of each wavelength can be determined by means of the following equation:
(2)
but
, therefore:
(3)
Where h is the planck's constant and
is the frequency.
Notice that it is necessary to express the frequency in units of meters for a better representation of the energy.
⇒
⇒
Case for the bluest light:
Case for the reddest light:
Equation 3 show that if the wavelength is lower the energy will be greater (inversely proportional).
Hence, according with the result and what was explained above, the blue light has the highest energy.
When the temperature increases the volume will increase, and when it cools it will decrease. This is because the molecules spread further apart as the temp gets higher, which creates a bigger volume.
<h2>Reffer the attachment </h2>
Mark as brainlist ❤️❤️