Answer:
This can be translated to:
"find the electrical charge of a body that has 1 million of particles".
First, it will depend on the charge of the particles.
If all the particles have 1 electron more than protons, we will have that the charge of each particle is q = -e = -1.6*10^-19 C
Then the total charge of the body will be:
Q = 1,000,000*-1.6*10^-19 C = -1.6*10^-13 C
If we have the inverse case, where we in each particle we have one more proton than the number of electrons, the total charge will be the opposite of the one of before (because the charge of a proton is equal in magnitude but different in sign than the charge of an electron)
Q = 1.6*10^-13 C
But commonly, we will have a spectrum with the particles, where some of them have a positive charge and some of them will have a negative charge, so we will have a probability of charge that is peaked at Q = 0, this means that, in average, the charge of the particles is canceled by the interaction between them.
I believe that the answer is A but correct me if i’m wrong
The metric unit of force is Newton or N. The Newton unit is also equal
to kilogram per meter per second squared. The Newton name came from the late
physicist Isaac Newton. It is also based on the second law of motion.
Answer:
The gravitational potential energy of a squirrel is 53.312 J.
Explanation:
We have,
Mass of a squirrel is 0.68 kg
It is placed at a height of 8 m above the ground.
It is required to find the gravitational potential energy of a squirrel. It is possessed by an object due to its position. Its formula is given by :

So, the gravitational potential energy of a squirrel is 53.312 J.
Answer:
we conclude that visible light is that electromagnetic wave that makes up the colors of a rainbow seen after a storm.
Hence, option A is correct.
Explanation:
Generally, after the storm, we can witness the presence of a rainbow with our naked eyes. Rainbow, visible to our eyes, consists of all the seven constituent colors of white light. Those seven colors range from violet to red, all having different wavelengths. When water particles present in our atmosphere get exposed to light, all the constituent colors of a white light tend to deviate at a variety of angles. It happens due to their refraction through water particles; thus, a spectrum is obtained.
As we cannot see X-rays, UV rays, and infrared waves through our naked eye, visible light is the kind of electromagnetic wave that makes anyone able to see the objects.
Please note that all the constitute colors of a beautiful rainbow associate with the visible region of the electromagnetic spectrum.
Therefore, we conclude that visible light is that electromagnetic wave that makes up the colors of a rainbow seen after a storm.
Hence, option A is correct.