Working Principle: Stratified Random Sampling
nx = (Nx/N)*n
where:
nx = sample size for stratum x
Nx = population size for stratum x
N = total population size
n = total sample size
Given:
Nx = 100
N = 1000
n = 0.5*(1000) = 500
Required: Probability of Man to be selected
Solution:
nx = (Nx/N)*n
nx = (100/1000)*500 = 50 men
ny = (Nx/N)*n
ny = (100/1000)*500 = 50 women
Probability of Man to be selected = nx/(nx + ny)*100 = 50/(50+50)*100 = 50%
<em>ANSWER: 50%</em>
Answer:
x>4
Step-by-step explanation:
![2x + 2 > 10 \\ 2x > 10 - 2 \\ 2x > 8 \\ x > 4](https://tex.z-dn.net/?f=2x%20%2B%202%20%3E%2010%20%5C%5C%202x%20%3E%2010%20-%202%20%5C%5C%202x%20%3E%208%20%5C%5C%20x%20%3E%204)
Sorry if there is any mistakes
Answer:
4a^2 - 15b + 9b^2
Step by step explanation:
Answer:
![D = 63.717](https://tex.z-dn.net/?f=D%20%3D%2063.717)
Step-by-step explanation:
The details that complete the question are:
![(x_1,y_1) = (0,42.78)](https://tex.z-dn.net/?f=%28x_1%2Cy_1%29%20%3D%20%280%2C42.78%29)
and
![(x_2,y_1)=(90,42.78)](https://tex.z-dn.net/?f=%28x_2%2Cy_1%29%3D%2890%2C42.78%29)
Required
Determine how far the ball travelled
Distance is calculated using:
![D = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}](https://tex.z-dn.net/?f=D%20%3D%20%5Csqrt%7B%28x_2-x_1%29%5E2%2B%28y_2-y_1%29%5E2%7D)
Substitute values for x's and y's
![D = \sqrt{(42.78 - 0)^2+(42.78-90)^2}](https://tex.z-dn.net/?f=D%20%3D%20%5Csqrt%7B%2842.78%20-%200%29%5E2%2B%2842.78-90%29%5E2%7D)
![D = \sqrt{42.78^2+(-47.22)^2](https://tex.z-dn.net/?f=D%20%3D%20%5Csqrt%7B42.78%5E2%2B%28-47.22%29%5E2)
![D = \sqrt{1830.1284+2229.7284](https://tex.z-dn.net/?f=D%20%3D%20%5Csqrt%7B1830.1284%2B2229.7284)
![D = \sqrt{4059.8568](https://tex.z-dn.net/?f=D%20%3D%20%5Csqrt%7B4059.8568)
![D = 63.717](https://tex.z-dn.net/?f=D%20%3D%2063.717)
<em>Hence, the ball travelled a distance of 63.717 units</em>
Answer:
3xy² - 14y²
Step-by-step explanation:
I hope that this is the problem
- x²y + [ - (x²y - 2xy² + y²) + (xy² - 3y² + x²y)] - (10y² - x²y)
= - x²y + [ - x²y + 2xy² - y² + xy² - 3y² + x²y] - 10y² + x²y
Now combine like terms in the [ ].
= - x²y + [ -x²y + x²y + 2xy² + xy² - y² - 3y² ] - 10y² + x²y
= - x²y + [ 0 + 3xy² - 4y²] - 10y² + x²y
= - x²y + 3xy² - 4y² -10y² + x²y Now combine like terms
= (-x²y + x²y) + 3xy² + (-4y² - 10y²)
= 0 + 3xy² - 14y²
= 3xy² - 14y² or y²(3x - 14)