Answer:
I = 30 A.
Explanation:
Given that,
The voltage of the battery, V = 230 V
Power used to charge the battery, P = 6.9 kW
We need to find the current used to charge the battery. The formula for the power is given by :
P = VI
Where
I is current
So,
So, the required current is 30 A.
The solution to the problem is as follows:
<span>First, I'd convert 188 mi/hr to ft/s. You should end up with about ~275.7 ft/s.
So now write down all the values you know:
Vfinal = 275.7 ft/s
Vinitial = 0 ft/s
distance = 299ft
</span>
<span>Now just plug in Vf, Vi and d to solve
</span>
<span>Vf^2 = Vi^2 + 2 a d
</span><span>BTW: That will give you the acceleration in ft/s^2. You can convert that to "g"s by dividing it by 32 since 1 g is 32 ft/s^2.</span>
Divide 360000 by 200 to get 1800 seconds, or half of hour.
Answer:
(a). 14.4 lbf/in^2.
(b). 27.8 in, AS THE TEMPERATURE INCREASES, THE LENGTH OF MERCURY DECREASES.
Explanation:
So, from the question above we are given the following parameters which are going to help us in solving this particular Question;
=> The "barometer accidentally contains 6.5 inches of water on top of the mercury column (so there is also water vapor instead of a vacuum at the top of the barometer)"
=> "On a day when the temperature is 70oF, the mercury column height is 28.35 inches (corrected for thermal expansion)."
With these knowledge, let us delve right into the solution;
(a). The barometric pressure = water vapor pressure + acceleration due to gravity (ft/s^2) × water density(slug/ft^3) × {ft/12 in}^3 × [ height of mercury column + specific gravity of mercury × height of water column].
The barometric pressure= 0.363 + {(62.146) ÷ (12^3) × 390.6425}. = 14.4 lbf/in^2.
(b). { (13.55 × length of mercury) + 6.5 } × (62.15÷ 12^3) = 14.4 - 0.603.
Length of mercury = 27.8 in.
AS THE TEMPERATURE INCREASES, THE LENGTH OF MERCURY DECREASES.