Answer:
The correct answer will be "
".
Explanation:
The time it would take again for current or electricity flows throughout the circuit including its LR modules can be connected its full steady-state condition is equal to approximately 5
as well as five-time constants.
It would be calculated in seconds by:
⇒ 
, where
- R seems to be the resistor function in ohms.
- L seems to be the inductor function in Henries.
Let's be clear: The plane's "395 km/hr" is speed relative to the
air, and the wind's "55 km/hr" is speed relative to the ground.
Before the wind hits, the plane moves east at 395 km/hr relative
to both the air AND the ground.
After the wind hits, the plane still maintains the same air-speed.
That is, its velocity relative to the air is still 395 km/hr east.
But the wind vector is added to the air-speed vector, and the
plane's velocity <span>relative to the ground drops to 340 km/hr east</span>.
Answer:
- R = ( 4.831 m , 1.469 m )
- Direction of R relative to the x axis= 16°54'33'
Explanation:
Knowing the magnitude and directions relative to the x axis, we can find the Cartesian representation of the vectors using the formula

where
its the magnitude and θ.
So, for our vectors, we will have:


and


Now, we can take the sum of the vectors




This is R in Cartesian representation, now, to find the magnitude we can use the Pythagorean theorem





To find the direction, we can use




As we are in the first quadrant, this is relative to the x axis.
Theories have both an explanatory an a predictive function. True