The string that will break first depends on the weight of the block or bar subjected to such string.
According to Hook's law, the force applied to an elastic material is directly proportional to the extension of the material.
F= kx
where;
- <em>F is the force applied to the object = weight of the object</em>
For given two identical strings, the string that will break first depends on the mass of the bar and the block.
- If the bar is heavier than the block, then the string subjected to the bar will break first.
- On the other hand, if the block is heavier than the bar, then the string subjected to the block will break first.
Thus, the string that will break first depends on the weight of the block or bar subjected to such string.
Learn more here:brainly.com/question/4404276
The correct answer for the question that is being presented above is this one:
Phi = BAsin(theta)
<span>1. Phi(i) = BA </span>
<span>2. Phi(f) = 0 </span>
3. EMF = N(phi(i)-phi(f))/deltat
Here are the follow-up questions:
<span>1. What is the total magnitude Phi_initial of the magnetic flux through the coil before it is rotated? </span>
<span>2. What is the magnitude Phi_final of the total magnetic flux through the coil after it is rotated? </span>
<span>3. What is the magnitude of the average emf induced in the coil?</span>
Answer:
w=3.05 rad/s or 29.88rpm
Explanation:
k = coefficient of friction = 0.3900
R = radius of the cylinder = 2.7m
V = linear speed of rotation of the cylinder
w = angular speed = V/R or to rewrite V = w*R
N = normal force to cylinder
N=


These must be balanced (the net force on the people will be 0) so set them equal to each other.





There are 2*pi radians in 1 revolution so:

So you need about 30 RPM to keep people from falling out the bottom
Answer:
you can measure by scale beacause we dont no sorry i cant help u but u can ask me some other Q