1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dusya [7]
3 years ago
11

One method that is used to grow nanowires (nanotubes with solid cores) is to initially deposit a small droplet of a liquid catal

yst onto a flat surface. The surface and catalyst are heated and simultaneously exposed to a higher-temperature, low-pressure gas that contains a mixture of chemical species from which the nanowire is to be formed. The catalytic liquid slowly absorbs the species from the gas through its top surface and converts these to a solid material that is deposited onto the underlying liquid-solid interface, resulting in construction of the nanowire. The liquid catalyst remains suspended at the tip of the nanowire. Consider the growth of a 15-nm-diameter silicon carbide nanowire onto a silicon carbide sururface. The surface is maintained at a temperature of Ts = 2400 K and the particular liquid catalyst that is used must be maintained in the range 2400 K ≤ Tc ≤ 3000 K to perform its function. Determine the maximum length of a nanowire that may be grown for conditions characterized by h = 105 W/m2.K and T[infinity] = 8000 KT. Assume properties of the nanowire are the same as for bulk silicon carbide.

Engineering
1 answer:
7nadin3 [17]3 years ago
4 0

Answer: maximum length of the nanowire is 510 nm

Explanation:

 

From the table of 'Thermo physical properties of selected nonmetallic solids at At T = 1500 K

Thermal conductivity of silicon carbide k = 30 W/m.K

Diameter of silicon carbide nanowire, D = 15 x 10⁻⁹ m  

lets consider the equation for the value of m

m = ( (hP/kAc)^1/2 )  = ( (4h/kD)^1/2 )  

m =  ( ((4 × 10⁵)/(30×15×10⁻⁹ ))^1/2 ) = 942809.04    

now lets find the value of h/mk    

h/mk = 10⁵ / ( 942809.04 × 30) =  0.00353

lets consider the value θ/θb by using the equation

θ/θb = (T - T∞) / (T - T∞)

θ/θb =  (3000 - 8000) / (2400 - 8000)

= 0.893

the temperature distribution at steady-state is expressed as;

θ/θb = [ cosh m(L - x) + ( h/mk) sinh m (L - x)]   / [cosh mL+  (h/mk) sinh mL]

θ/θb = [ cosh m(L - L) + ( h/mk) sinh m (L - L)]   / [cosh mL+  (h/mk) sinh mL]

θ/θb = [ 1 ]  / [cosh mL+  (h/mk) sinh mL]

so we substitute

0.893 =  [ 1 ]  / [cosh (942809.04 × L) +  (0.00353) sinh (942809.04 × L)]

L = 510 × 10⁻⁹m

L = 510 nm

therefore maximum length of the nanowire is 510 nm

You might be interested in
Does a thicker core make an electromagnet stronger?
mel-nik [20]

Answer:

Yes

Explanation:

The core of an electromagnet serves to stabilize the magnetic field created by the wire. The thicker the core, the more metal there is to amplify the current. Therefore, a thicker core does make an electromagnet stronger. Hope this helps!

6 0
3 years ago
Read 2 more answers
Water vapor at 10bar, 360°C enters a turbine operatingat steady state with a volumetric flow rate of 0.8m3/s and expandsadiabati
Artyom0805 [142]

Answer:

A) W' = 178.568 KW

B) ΔS = 2.6367 KW/k

C) η = 0.3

Explanation:

We are given;

Temperature at state 1;T1 = 360 °C

Temperature at state 2;T2 = 160 °C

Pressure at state 1;P1 = 10 bar

Pressure at State 2;P2 = 1 bar

Volumetric flow rate;V' = 0.8 m³/s

A) From table A-6 attached and by interpolation at temperature of 360°C and Pressure of 10 bar, we have;

Specific volume;v1 = 0.287322 m³/kg

Mass flow rate of water vapour at turbine is defined by the formula;

m' = V'/v1

So; m' = 0.8/0.287322

m' = 2.784 kg/s

Now, From table A-6 attached and by interpolation at state 1 with temperature of 360°C and Pressure of 10 bar, we have;

Specific enthalpy;h1 = 3179.46 KJ/kg

Now, From table A-6 attached and by interpolation at state 2 with temperature of 160°C and Pressure of 1 bar, we have;

Specific enthalpy;h2 = 3115.32 KJ/kg

Now, since stray heat transfer is neglected at turbine, we have;

-W' = m'[(h2 - h1) + ((V2)² - (V1)²)/2 + g(z2 - z1)]

Potential and kinetic energy can be neglected and so we have;

-W' = m'(h2 - h1)

Plugging in relevant values, the work of the turbine is;

W' = -2.784(3115.32 - 3179.46)

W' = 178.568 KW

B) Still From table A-6 attached and by interpolation at state 1 with temperature of 360°C and Pressure of 10 bar, we have;

Specific entropy: s1 = 7.3357 KJ/Kg.k

Still from table A-6 attached and by interpolation at state 2 with temperature of 160°C and Pressure of 1 bar, we have;

Specific entropy; s2 = 8.2828 KJ/kg.k

The amount of entropy produced is defined by;

ΔS = m'(s2 - s1)

ΔS = 2.784(8.2828 - 7.3357)

ΔS = 2.6367 KW/k

C) Still from table A-6 attached and by interpolation at state 2 with s2 = s2s = 8.2828 KJ/kg.k and Pressure of 1 bar, we have;

h2s = 2966.14 KJ/Kg

Energy equation for turbine at ideal process is defined as;

Q' - W' = m'[(h2 - h1) + ((V2)² - (V1)²)/2 + g(z2 - z1)]

Again, Potential and kinetic energy can be neglected and so we have;

-W' = m'(h2s - h1)

W' = -2.784(2966.14 - 3179.46)

W' = 593.88 KW

the isentropic turbine efficiency is defined as;

η = W_actual/W_ideal

η = 178.568/593.88 = 0.3

8 0
3 years ago
A car accelerates from rest with an acceleration of 5 m/s^2. The acceleration decreases linearly with time to zero in 15 s, afte
Tpy6a [65]

Answer: At time 18.33 seconds it will have moved 500 meters.

Explanation:

Since the acceleration of the car is a linear function of time it can be written as a function of time as

a(t)=5(1-\frac{t}{15})

a=\frac{d^{2}x}{dt^{2}}\\\\\therefore \frac{d^{2}x}{dt^{2}}=5(1-\frac{t}{15})

Integrating both sides we get

\int \frac{d^{2}x}{dt^{2}}dt=\int 5(1-\frac{t}{15})dt\\\\\frac{dx}{dt}=v=5t-\frac{5t^{2}}{30}+c

Now since car starts from rest thus at time t = 0 ; v=0 thus c=0

again integrating with respect to time we get

\int \frac{dx}{dt}dt=\int (5t-\frac{5t^{2}}{30})dt\\\\x(t)=\frac{5t^{2}}{2}-\frac{5t^{3}}{90}+D

Now let us assume that car starts from origin thus D=0

thus in the first 15 seconds it covers a distance of

x(15)=2.5\times 15^{2}-\farc{15^{3}}{18}=375m

Thus the remaining 125 meters will be covered with a constant speed of

v(15)=5\times 15-\frac{15^{2}}{6}=37.5m/s

in time equalling t_{2}=\frac{125}{37.5}=3.33seconds

Thus the total time it requires equals 15+3.33 seconds

t=18.33 seconds

3 0
3 years ago
Frank D. Drake, an investigator in the SETI (Search for Extra-Terrestrial Intelligence) program, once said that the large radio
AlexFokin [52]

Answer:

attached below

Explanation:

4 0
3 years ago
Are trains cool because if they are then my dad didn't beat me
umka2103 [35]

Answer:

I think trains are pretty awesome. There's a train in japan that levitates slightly and runs on magnetism. Pretty amazing. It's super fast too

8 0
3 years ago
Other questions:
  • Types of technology include:
    8·1 answer
  • 1) Pareto charts are used to: A) identify inspection points in a process. B) outline production schedules. C) organize errors, p
    6·1 answer
  • WhT DO FILM PRODUTION SAY WHEN REMOVING GREEN AND BLUE SCREENS.
    14·1 answer
  • You are considering purchasing a compact washing machine, and you have the following information: The Energy Guide claims an est
    8·1 answer
  • Which of the following refers to software designed to alter system files and utilities on a victim’s system with the intention o
    15·1 answer
  • The grade is a measure of quality and it captures concentration levels (i.e., how pure a certain fraction is). If grade captures
    13·1 answer
  • 5) Initially, the pressure and temperature of steam inside a solid capsule is at 100-pound force per square inch absolute (psia)
    6·1 answer
  • The chart shows the bids provided by four engineers to test a prototype.
    6·1 answer
  • People with skills and training in areas such as marketing or accounting are an important part of the manufacturing industry.
    11·1 answer
  • Two basic types of mechanical fuel injector systems?​
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!