Answer:
class TriangleNumbers
{
public static void main (String[] args)
{
for (int number = 1; number <= 10; ++number) {
int sum = 1;
System.out.print("1");
for (int summed = 2; summed <= number; ++summed) {
sum += summed;
System.out.print(" + " + Integer.toString(summed));
}
System.out.print(" = " + Integer.toString(sum) + '\n');
}
}
}
Explanation:
We need to run the code for each of the 10 lines. Each time we sum numbers from 1 to n. We start with 1, then add numbers from 2 to n (and print the operation). At the end, we always print the equals sign, the sum and a newline character.
Answer:
Observational Skills
Explanation:
Observing the area also known as scanning the scene
Answer:
%Reduction in area = 73.41%
%Reduction in elongation = 42.20%
Explanation:
Given
Original diameter = 12.8 mm
Gauge length = 50.80mm
Diameter at the point of fracture = 6.60 mm (0.260 in.)
Fractured gauge length = 72.14 mm.
%Reduction in Area is given as:
((do/2)² - (d1/2)²)/(do/2)²
Calculating percent reduction in area
do = 12.8mm, d1 = 6.6mm
So,
%RA = ((12.8/2)² - 6.6/2)²)/(12.8/2)²
%RA = 0.734130859375
%RA = 73.41%
Calculating percent reduction in elongation
%Reduction in elongation is given as:
((do) - (d1))/(d1)
do = 72.14mm, d1 = 50.80mm
So,
%RA = ((72.24) - (50.80))/(50.80)
%RA = 0.422047244094488
%RA = 42.20%
Answer:
3.03 INCHES
Explanation:
According to ASTM D198 ;
Modulus of rupture = ( M / I ) * y ----- ( 1 )
M ( bending moment ) = R * length of span / 2
= (120 * 10^3 ) * 48 / 2 = 288 * 10^4 Ib-in
I ( moment of inertia ) = bd^3 / 12
= ( 2 )*( d )^3 / 12 = 2d^3 / 12
b = 2 in , d = ?
length of span = 4 * 12 = 48 inches
R = P / 2 = 240 * 10^3 / 2 = 120 * 10^3 Ib
y ( centroid distance ) = d / 2 inches
back to equation ( 1 )
( M / I ) * y
940.3 ksi = ( 288 * 10^4 / 2d^3 / 12 ) * d / 2
= ( 288 * 10^4 * 12 ) / 2d^3 ) * d / 2
940300 = 34560000* d / 4d^3
4d^3 ( 940300 ) = 34560000 d ( divide both sides with d )
4d^2 = 34560000 / 940300
d^2 = 9.188 ∴ Value of d ≈ 3.03 in
You're welcome lol! !!!!!!!!!!!!!!
:):):):)