Answer:
D 5 V
Explanation:
Without seeing the whole circuit it is impossible to say for certain.
However the simplest circuit would produce a value of
FV = IR = 0.25(20) = 5 v
Factor out 8 and then facotr and u get
8/9(9x+1)(9x-1
The question extends beyond what I already know.
The question makes me curious.
Answer:
The final velocity of the ball is 7m/s
Explanation:
M1=8kg, V1 =10m/s
, M2=2kg
, V2=-5m/s
initial momentum before collison
m1v1+m2v2
=8×10 +2×(-5) =80-10 = 70kg m/s
final momentum after collison
=(m1+m2)×v
=(8+2)×v
=10v
According to the law of conversion of momentum
initial momentum =final momentum
70=10v
10v=70
v=70/10
v=7m/s
Answer:
i. The radius 'r' of the electron's path is 4.23 ×
m.
ii. The frequency 'f' of the motion is 455.44 KHz.
Explanation:
The radius 'r' of the electron's path is called a gyroradius. Gyroradius is the radius of the circular motion of a charged particle in the presence of a uniform magnetic field.
r = 
Where: B is the strength magnetic field, q is the charge, v is its velocity and m is the mass of the particle.
From the question, B = 1.63 ×
T, v = 121 m/s, Θ =
(since it enters perpendicularly to the field), q = e = 1.6 ×
C and m = 9.11 ×
Kg.
Thus,
r =
÷ sinΘ
But, sinΘ = sin
= 1.
So that;
r = 
= (9.11 ×
× 121) ÷ (1.6 ×
× 1.63 ×
)
= 1.10231 ×
÷ 2.608 × 
= 4.2266 ×
= 4.23 ×
m
The radius 'r' of the electron's path is 4.23 ×
m.
B. The frequency 'f' of the motion is called cyclotron frequency;
f = 
= (1.6 ×
× 1.63 ×
) ÷ (2 ×
× 9.11 ×
)
= 2.608 ×
÷ 5.7263 × 
= 455442.4323
f = 455.44 KHz
The frequency 'f' of the motion is 455.44 KHz.