Complete question is:
A 1200 kg car reaches the top of a 100 m high hill at A with a speed vA. What is the value of vA that will allow the car to coast in neutral so as to just reach the top of the 150 m high hill at B with vB = 0 m/s. Neglect friction.
Answer:
(V_A) = 31.32 m/s
Explanation:
We are given;
car's mass, m = 1200 kg
h_A = 100 m
h_B = 150 m
v_B = 0 m/s
From law of conservation of energy,
the distance from point A to B is;
h = 150m - 100 m = 50 m
From Newton's equations of motion;
v² = u² + 2gh
Thus;
(V_B)² = (V_A)² + (-2gh)
(negative next to g because it's going against gravity)
Thus;
(V_B)² = (V_A)² - (2gh)
Plugging in the relevant values;
0² = (V_A)² - 2(9.81 × 50)
(V_A) = √981
(V_A) = 31.32 m/s
<span>The primary physician in cases of schizophrenia is the psychiatrist.
hope this helps, Terrakmiller80! :-)</span>
Lunar phase is the same wherever on Earth you observe
<span>Last (third) quarter rises at midnight, sets at noon. </span>
<span>First quarter rises at noon, sets at midnight</span>
Answer:
The answer is A ) High pressure
I hope this helps you :)
please let me know if I am wrong
-- The lenses of eyeglasses work because of refraction.
-- A pencil standing in a half-glass of water looks broken because of refraction.
-- The lenses and mirrors in telescopes and microscopes work because of refraction.
-- When the sun is setting and it looks squashed ... shorter and wider than a true circle ... that's caused by refraction of the sunlight through Earth's atmosphere.