Answer:
b. The shorter the half-life, the more dangerous the radioisotope.
Answer:
see explanation below
Explanation:
First to all, this is a redox reaction, and the reaction taking place is the following:
2KMnO4 + 3H2SO4 + 5H2O2 -----> 2MnSO4 + K2SO4 + 8H2O + 5O2
According to this reaction, we can see that the mole ratio between the peroxide and the permangante is 5:2. Therefore, if the titration required 21.3 mL to reach the equivalence point, then, the moles would be:
MhVh = MpVp
h would be the hydrogen peroxide, and p the permanganate.
But like it was stated before, the mole ratio is 5:2 so:
5MhVh = 2MpVp
Replacing moles:
5nh = 2MpVp
Now, we just have to replace the given data:
nh = 2MpVp/5
nh = 2 * 1.68 * 0.0213 / 5
nh = 0.0143 moles
Now to get the mass, we just need the molecular mass of the peroxide:
MM = 2*1 + 2*16 = 34 g/mol
Finally the mass:
m = 0.0143 * 34
m = 0.4862 g
Lithium fluoride is the compound name
The answer is D. Effective collisions lead to chemical reactions!
Answer: 0.050M urea, 0.10M glucose, 0.2M sucrose, pure water
Explanation:
Vapor pressure refers to the ease with which a liquid substance is transformed into vapour. High vapour density implies that the liquid is easily transformed into gas. Pure water is expected to have the lowest vapour density since it is held by strong intermolecular forces in the liquid state. Urea is an organic liquid held by weak Van der Waals forces hence its extremely high vapor pressure.