Answer:
64.52 mg.
Explanation:
The following data were obtained from the question:
Half life (t½) = 1590 years
Initial amount (N₀) = 100 mg
Time (t) = 1000 years.
Final amount (N) =.?
Next, we shall determine the rate constant (K).
This is illustrated below:
Half life (t½) = 1590 years
Rate/decay constant (K) =?
K = 0.693 / t½
K = 0.693/1590
K = 4.36×10¯⁴ / year.
Finally, we shall determine the amount that will remain after 1000 years as follow:
Half life (t½) = 1590 years
Initial amount (N₀) = 100 mg
Time (t) = 1000 years.
Rate constant = 4.36×10¯⁴ / year.
Final amount (N) =.?
Log (N₀/N) = kt/2.3
Log (100/N) = 4.36×10¯⁴ × 1000/2.3
Log (100/N) = 0.436/2.3
Log (100/N) = 0.1896
Take the antilog
100/N = antilog (0.1896)
100/N = 1.55
Cross multiply
N x 1.55 = 100
Divide both side by 1.55
N = 100/1.55
N = 64.52 mg
Therefore, the amount that remained after 1000 years is 64.52 mg
Answer : The value of for this reaction is,
Explanation :
The given chemical reaction is:
Now we have to calculate value of .
where,
= Gibbs free energy of reaction = ?
n = number of moles
= -389.8 kJ/mol
= -161.96 kJ/mol
= -137.2 kJ/mol
Now put all the given values in this expression, we get:
The relation between the equilibrium constant and standard Gibbs, free energy is:
where,
= standard Gibbs, free energy = -89.4 kJ/mol = -89400 J/mol
R = gas constant = 8.314 J/L.atm
T = temperature =
= equilibrium constant = ?
Now put all the given values in this expression, we get:
Thus, the value of for this reaction is,
Answer :
Option A) 2.00 eV
Explanation : The conversion of J to eV is done with the following formula;
Here, we have the value of particle in terms of Joules which is 3.2 X
So, on substituting we get,
= 3.2 X
X
= 1.99 eV so, it can be rounded off to 2.00 eV.
<h2>~<u>Solution</u> :-</h2>
- Here, to find the atomic mass of element, we must;
We know that,
- 4.6 x $ \sf{10^{22}}$ atoms of an element weigh 13.8g.
Thus,
The atoms of $ \sf{ 6.02 \times 10^{13}}$ will weigh;
- Hence, the molar mass (atomic mass) will be <u>180.6 g.</u>
Water (H
2O) is a polar inorganic compound that is at room temperature a tasteless and odorless liquid, which is nearly colorless apart from an inherent hint of blue. It is by far the most studied chemical compound and is described as the "universal solvent" [18][19] and the "solvent of life".[20] It is the most abundant substance on Earth[21] and the only common substance to exist as a solid, liquid, and gas on Earth's surface.[22] It is also the third most abundant molecule in the universe.[21]
Water (H
2O)


NamesIUPAC name
water, oxidane
Other names
Hydrogen hydroxide (HH or HOH), hydrogen oxide, dihydrogen monoxide (DHMO) (systematic name[1]), hydrogen monoxide, dihydrogen oxide, hydric acid, hydrohydroxic acid, hydroxic acid, hydrol,[2] μ-oxido dihydrogen
Identifiers
CAS Number
7732-18-5 
3D model (JSmol)
Interactive image
Beilstein Reference
3587155ChEBI
CHEBI:15377 
ChEMBL
ChEMBL1098659 
ChemSpider
937 
Gmelin Reference
117
PubChem CID
962
RTECS numberZC0110000UNII
059QF0KO0R 
InChI
InChI=1S/H2O/h1H2 
Key: XLYOFNOQVPJJNP-UHFFFAOYSA-N 
SMILES
O
Properties
Chemical formula
H
2OMolar mass18.01528(33) g/molAppearanceWhite crystalline solid, almost colorless liquid with a hint of blue, colorless gas[3]OdorNoneDensityLiquid:[4]
0.9998396 g/mL at 0 °C
0.9970474 g/mL at 25 °C
0.961893 g/mL at 95 °C
Solid:[5]
0.9167 g/ml at 0 °CMelting point0.00 °C (32.00 °F; 273.15 K) [a]Boiling point99.98 °C (211.96 °F; 373.13 K) [6][a]SolubilityPoorly soluble in haloalkanes, aliphaticand aromatic hydrocarbons, ethers.[7]Improved solubility in carboxylates, alcohols, ketones, amines. Miscible with methanol, ethanol, propanol, isopropanol, acetone, glycerol, 1,4-dioxane, tetrahydrofuran, sulfolane, acetaldehyde, dimethylformamide, dimethoxyethane, dimethyl sulfoxide, acetonitrile. Partially miscible with Diethyl ether, Methyl Ethyl Ketone, Dichloromethane, Ethyl Acetate, Bromine.Vapor pressure3.1690 kilopascals or 0.031276 atm[8]Acidity (pKa)13.995[9][10][b]Basicity (pKb)13.995Conjugate acidHydroniumConjugate baseHydroxideThermal conductivity0.6065 W/(m·K)[13]
Refractive index (nD)
1.3330 (20 °C)[14]Viscosity0.890 cP[15]Structure
Crystal structure
Hexagonal
Point group
C2v
Molecular shape
Bent
Dipole moment
1.8546 D[16]Thermochemistry
Heat capacity (C)
75.375 ± 0.05 J/(mol·K)[17]
Std molar
entropy (So298)
69.95 ± 0.03 J/(mol·K)[17]
Std enthalpy of
formation (ΔfHo298)
−285.83 ± 0.04 kJ/mol[7][17]
Gibbs free energy (ΔfG˚)
−237.24 kJ/mol[7]