Answer:
Explanation:
Atmospheric pressure = 7 x 10⁴ Pa
force on a disk-shaped region 2.00 m in radius at the surface of the ocean due to atmosphere = pressure x area
= 7 x 10⁴ x 3.14 x 2 x 2
= 87.92 x 10⁴ N
b )
weight, on this exoplanet, of a 10.0 m deep cylindrical column of methane with radius 2.00 m
Pressure x area
height x density x acceleration of gravity x π r²
= 10 x 415 x 6.2 x 3.14 x 2 x 2
=323168.8 N
c ) Pressure at a depth of 10 m
atmospheric pressure + pressure due to liquid column
= 7 x 10⁴ + 10 x 415 x 6.2 ( hρg)
= 7 x 10⁴ + 10 x 415 x 6.2
(7 + 2.57 )x 10⁴ Pa
9.57 x 10⁴ Pa
Answer:
a = -5.10 m/s^2
her acceleration on the rough ice is -5.10 m/s^2
Explanation:
The distance travelled on the rough ice is equal to the width of the rough ice.
distance d = 5.0 m
Initial speed u = 9.2 m/s
Final speed v = 5.8 m/s
The time taken to move through the rough ice can be calculated using the equation of motion;
d = 0.5(u+v)t
time t = 2d/(u+v)
Substituting the given values;
t = 2(5)/(9.2+5.8)
t = 2/3 = 0.66667 second
The acceleration is the change in velocity per unit time;
acceleration a = ∆v/t
a = (v-u)/t
Substituting the values;
a = (5.8-9.2)/0.66667
a = -5.099974500127
a = -5.10 m/s^2
her acceleration on the rough ice is -5.10 m/s^2
We need to be careful here.
The calculation of the gravitational force between two objects
refers to the distance between their centers.
The minimum possible distance between the Earth's and moon's
centers is the sum of their radii (radiuses).
Earth's radius . . . . . 6,360 km = 6.36 x 10⁶ meters
Moon's radius . . . . . 1,738 km = 1.738 x 10⁶ meters
Sum of their radii = 8.098 x 10⁶ meters
Also:
Earth's mass . . . . . 5.972 x 10²⁴ kg
Moon's mass . . . . . 7.348 x 10²² kg
<span>
and now we're ready to go !
Gravitational force =
G M₁ M₂ / R²
= (6.67 x 10⁻¹¹ N-m²/kg²)(</span><span>5.972 x 10²⁴ kg)(7.348 x 10²² kg)/</span>(8.098 x 10⁶ m)²
= (6.67 · 5.972 · 7.348 / 8.098²) · (10²³) Newtons
= (I get ...) 4.463 x 10²³ Newtons
That's almost exactly 10²³ pounds
= 50,153,000,000,000,000,000 tons.
Those are big numbers.
All I can say is: I wouldn't exactly call that "resting" on the surface".