True. There are forced acting on it, but as they're balanced it is unmoving
Explanation:
The magnitude of the electric field between the plates is given by
E = -ΔV/d
minus sign indicates Potential decreases in the direction of electric field
where
ΔV is the potential difference between the plates
D is the distance between the plates.
The work done when carrying an electrical charge on an equipotential surface between one position to the other is zero W= q(V-V)=0 The electric field lines of force are always perpendicular to an equipotential surface. That conductor in an equipotential surface as direction E is at right angles to an eauipotential surface The intensity of the electric field along an equipotential surface is always zero. Equipotential surfaces never collide with each other as this would mean that at that point, there are two alternative values that are not true.
Answer:
Explanation:
Given

Em wave is in the form of

where 


Wave constant for EM wave k is

Wavelength of wave 


F=mv^2/R
----> V^2=FR/m=(350x0.9)/2.5=126
----- V=11.22 m/s
The gravitational force between two objects is given by:

where
G is the gravitational constant
m1 and m2 are the masses of the two objects
r is their separation
In this problem, the first object has a mass of

, while the second "object" is the Earth, with mass

. The distance of the object from the Earth's center is

; if we substitute these numbers into the equation, we find the force of gravity exerted by the Earth on the mass of 0.60 kg: