Answer:
of water at 30C and 1 atm is 256.834 J/mol·K.
Explanation:
To solve the question, we note the Maxwell relation such as

Where:
= Specific heat of gas at constant pressure = 75.3 J/mol·K
= Specific heat of gas at constant volume = Required
T = Temperature = 30 °C = 303.15 K
α = Linear expansion coefficient = 3.04 × 10⁻⁴ K⁻¹
K = Volume comprehensibility = 4.52 × 10⁻⁵ atm⁻¹
Therefore,
75.3 -
= 
=
- 75.3 = 256.834 J/mol·K.
Hey there!
Molar mass N2 = 28.01 g/mol
Therefore:
28.01 g N2 -------------- 6.02*10²² molecules N2
( mass N2 ?? ) ----------- 25,000 molecules N2
mass N2 = ( 25,000 * 28.01 ) / ( 6.02*10²³ )
mass N2 = 700250 / 6.02*10²³
mass N2 = 1.163*10⁻¹⁸ g
Hope that helps!
The products are on the right side of the equation. For this one it would be 2AlPO4 + 3CaSO4
Glass is not a living organism, so it is <u>abiotic</u>.
Since the substance absorbs heat, it is expected that the temperature will rise. The formula for the internal energy of a substance is given by the equation:
ΔU = mCpΔT
where:
ΔU = internal energy
m = mass of substance
Cp = specific heat capacity of substance
ΔT = change in temperature
ΔU = 2722 Joules = 16.2 grams (9.22 J/g-°C) (Tf - 26°C)
This gives a final temperature of Tf = 44.22 °C