Answer: The spinning of Earth's outer core causes the lithosphere to break into individual plates and collide with each other.
Earth's surface forms because of this reason:
The spinning of Earth's outer core causes the lithosphere to break into individual plates and collide with each other.
Kepler's 3rd law is given as
P² = kA³
where
P = period, days
A = semimajor axis, AU
k = constant
Given:
P = 687 days
A = 1.52 AU
Therefore
k = P²/A³ = 687²/1.52³ = 1.3439 x 10⁵ days²/AU³
Answer: 1.3439 x 10⁵ (days²/AU³)
Answer:
1.
Upon analysis of the results, a hypothesis can be rejected or modified, but it can never be proven to be correct 100 percent of the time. For example, relativity has been tested many times, so it is generally accepted as true, but there could be an instance, which has not been encountered, where it is not true.
2.Mass is the amount of matter in a body, normally measured in grams or kilograms etc. Weight is a force that pulls on a mass and is measured in Newtons. So on Earth, Weight would be your (mass x acceleration( 9.8 ) . Density, there are lots of kinds of density I guess, but the one you are talking about is density = mass / volume. Density basically means how much mass is occupied in a specific volume or space. Different materials of the same size may have different masses because of its density. Density in this case is measured in kg / m^3 or kg / L or g / m^3 etc where the numerator is a unit of mass and the denominator a unit of volume.
3.The density of an object determines whether it will float or sink in another substance. An object will float if it is less dense than the liquid it is placed in. An object will sink if it is more dense than the liquid it is placed in.
4. An object will float if the gravitational (downward) force is less than the buoyancy (upward) force. So, in other words, an object will float if it weighs less than the amount of water it displaces. This explains why a rock will sink while a huge boat will float.
5.
Answer:
Explanation:
Using the magnification formula.
Magnification = Image distance(v)/object distance(u) = Image Height(H1)/Object Height(H2)
M = v/u = H1/H2
v/u = H1/H2...1
3) Given the radius of curvature of the concave lens R = 20cm
Focal length F = R/2
f = 20/2
f = 10cm
Object distance u = 5cm
Object height H2= 5cm
To get the image distance v, we will use the mirror formula
1/f = 1/u+1/v
1/v = 1/10-1/5
1/v = (1-2)/10
1/v =-1/10
v = -10cm
Using the magnification formula
(10)/5 = H1/5
10 = H1
H1 = 10cm
Image height of the peg is 10cm
4) If u = 15cm
1/v = 1/f-1/u
1/v = 1/10-1/15
1/v = 3-2/30
1/v = 1/30
v = 30cm
30/15 = H1/5
15H1 = 150
H1/= 10cm
5) if u = 20cm
1/v = 1/f-1/u
1/v = 1/10-1/20
1/v = 2-1/20
1/v = 1/20
v = 20cm
20/20 = H1/5
20H1 = 100
H1 = 5cm
6) If u = 30cm
1/v = 1/f-1/u
1/v = 1/10-1/30
1/v = 3-1/30
1/v = 2/30
v = 30/2 cm
v =>15cm
15/30 = Hi/5
30H1 = 75
H1 = 75/30
H1 = 2.5cm