Answer:
Answered
Explanation:
The radius of curvature of the mirror R = 20 cm
then the focal length f = R/2 = 10 cm
(a) From mirror formula
1/f = 1/di + /1do
then the image distance
di = fd_o / d_o - f
= (10)(40) / 40-10
= 30.76 cm
since the image distance is positive so the image is real
ii) when the object distance d_0=20 cm
di = 10×20/ 20-10
= 20
Hence, the image must be real
iii)when the object distance d_0 = 10
di = 10×10 / 10-10 = ∞ (infinite)
the image will be formed at ∞
here also image will be real but diminished.
Answer:
it sets consistent prices to achieve sustainability
Answer:
Force, F = 44 N
Explanation:
Given that,
Initial speed of the football, u = 0
Final speed, v = 15 m/s
The time of contact of the ball, t = 0.15 s
The mass of football, m = 0.44 kg
We need to find the average force exerted on the ball. It is given by the formula as :

So, the average force exerted on the ball is 44 N. Hence, this is the required solution.
By applying Coulomb's law between the charges, the net force on the charged particle q₁ due to particle q₂ and q₃ is -9.86 N.
<h3>
Distance between q₂ and q₃</h3>
The distance between the second charge and the third charge is given as;
r = 0.3 m
<h3>Force on q₂ due to q₃</h3>

<h3>Net force on particle q₁</h3>
The net force on particle q₁ is determined by summing the individual forces together;
F(net) = F₁ + F₂
F(net) = -14.4 + 4.54
F(net) = -9.86 N
Thus, by applying Coulomb's law between the charges, the net force on the charged particle q₁ due to particle q₂ and q₃ is -9.86 N.
Learn more about Coulomb's law here: brainly.com/question/24743340