1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Yuki888 [10]
4 years ago
15

A Ferris wheel at a carnival has a diameter of 58 feet. Suppose a passenger is traveling at 9 miles per hour. (A useful fact: .)

(a) Find the angular speed of the wheel in radians per minute. (b) Find the number of revolutions the wheel makes per hour. (Assume the wheel does not stop.) Do not round any intermediate computations, and round your answer to the nearest whole number.
Physics
1 answer:
Anastasy [175]4 years ago
7 0

Answer:

a) 27.2 rad/min

b) 260 rev/h

Explanation:

The passenger is traveling at 9 mph, this is the tangential speed.

The relation between tangential speed and angular speed is:

v = r * w

Where

v: tangential speed

r: radius

w: angular speed

Also, the radius is

r = d/2

d is the diameter

Therefore:

v = (d * w)/2

Rearranging:

w = 2*v/d

w = (2*9 mile/h)/(58 feet)

We need to convert the feet to miles

w = (2*9 mile/h)/(0.011 miles) = 1636 rad/h

We divide this by 60 to get it in radians per minute

w = 1636/60 = 27.2 rad/min

Now the angular speed is in radians, to get revolutions we have to divide by 2π

n = v/(π*d)

n = (9 mile/h)/(π*0.011 mile) = 260 rev/h

You might be interested in
An object accelerating at 16 m/s/s doubles its mass and triples its net force acting on it. What will the new acceleration be? (
nataly862011 [7]

Answer:

24 m/s²

Explanation:

The given parameters are;

The initial acceleration of the object, a = 16 m/s²

Let 'm' represent the initial mass of the object

The initial force acting on the object, F = m × a

∴ F = 16 × m = 16·m

When the mass is doubled, we have;

The new mass of the object, m₂ = 2 × m = 2·m

When the net force acting on the object triples, we have;

The new net force acting on the object, F₂ = 3 × F = 3 × 16·m = 48·m

From F = m × a, we have;

a = F/m

∴ The new acceleration of the object, a₂ = F₂/m₂

From which, by plugging in the values, we have;

a₂ = 48·m/(2·m) = 24

The new acceleration of the object, a₂ = 24 m/s².

6 0
3 years ago
You build a grandfather clock, whose timing is based on a pendulum. You measure its period to be 2s on Earth. You then travel wi
Elenna [48]

Answer:

\frac{g_{2}}{g_{1}} = \frac{1}{4}

Explanation:

The period of the simple pendulum is:

T = 2\pi\cdot \sqrt{\frac{l}{g} }

Where:

l - Cord length, in m.

g - Gravity constant, in \frac{m}{s^{2}}.

Given that the same pendulum is test on each planet, the following relation is formed:

T_{1}^{2}\cdot g_{1} = T_{2}^{2}\cdot g_{2}

The ratio of the gravitational constant on planet CornTeen to the gravitational constant on planet Earth is:

\frac{g_{2}}{g_{1}} = \left(\frac{T_{1}}{T_{2}} \right)^{2}

\frac{g_{2}}{g_{1}} = \left(\frac{2\,s}{4\,s} \right)^{2}

\frac{g_{2}}{g_{1}} = \frac{1}{4}

5 0
4 years ago
Which jovian planet should have the most extreme seasonal changes? a. Saturn b. Neptune c. Jupiter d. Uranus
Maksim231197 [3]

Answer:

D). Uranus.

Explanation:

Jovian planets are described as the planets which are giant balls of gases and located farthest from the sun which primarily include Jupiter, Saturn, Uranus, and Neptune.

As per the question, 'Uranus' is the jovian planet that would have the most extreme seasonal changes as its tilted axis leads each season to last for about 1/4 part of its 84 years orbit. The strong tilted axis encourages extreme changes in the season on Uranus. Thus, <u>option D</u> is the correct answer.

3 0
3 years ago
How much work must be done to bring three electrons from a great distance apart to 5.0×10^−10 m from one another (at the corners
Inessa05 [86]

Answer:

1.38 x 10^-18 J

Explanation:

q = - 1.6 x 10^-19 C

d = 5 x 10^-10 m

the potential energy of the system gives the value of work done

The formula for the potential energy is given by

U =\frac{Kq_{1}q_{2}}{d}

So, the total potential energy of teh system is

U =\frac{Kq_{1}q_{2}}{d}+\frac{Kq_{2}q_{3}}{d}+\frac{Kq_{1}q_{3}}{d}

As all the charges are same and the distance between the two charges is same so the total potential energy becomes

U =3\times \frac{Kq^{2}}{d}

K = 9 x 10^9 Nm^2/C^2

By substituting the values

U =3\times \frac{9\times 10^{9}\times \ 1.6 \times 1.6 \times 10^{-38}}{5\times 10^{-10}}

U = 1.38 x 10^-18 J

6 0
4 years ago
An elevator and its load have a combined mass of 1650 kg. Find the tension in the supporting cable when the elevator, originally
gizmo_the_mogwai [7]

Answer:

Tension in the supporting cable is = 4,866 N ≅4.9 KN

Explanation:

First of all, we need to understand that tension is a force, so the motion law

F = Ma applies perfectly.

From Newtons third law of motion, action and reaction are equal and opposite. This means that the force experienced by the elevator, is equal to the tension experienced by the spring.

Parameters given:

Mass of load = 1650 kg

Acceleration of load = ?

The acceleration of the load can be obtained by diving the change in velocity by the time taken. But we need to know the time taken for the motion to 41 m.

Time taken = distance covered / velocity

= \frac{41m}{11m/s} = 3.73 seconds

∴Acceleration = ( initial velocity - final velocity )/ time taken

Note: Final velocity is = 0 since the body came to a rest.

Acceleration = \frac{11 - 0 m/s}{3.73s} = 2.95m/s^{2}

Force acting on the cable = mass of elevator × acceleration of elevator

= 1650 × 2.95 = 4869.5 kg ≅ 4.9 KN

6 0
3 years ago
Other questions:
  • If your vehicle has a steering wheel lock, should you ever turn off the ignition while it is moving?
    15·1 answer
  • Kate is working on a project in her tech education class. She plans to assemble a fan motor. Which form of energy does the motor
    12·1 answer
  • The charge of a single electron
    7·1 answer
  • Anybody wanna help? (Picture Included?)
    15·1 answer
  • A 50.0 g projectile is launched with a horizontal velocity of 657 m/s from a 4.65 kg launcher moving in the same direction at 2.
    10·1 answer
  • What is most likely the author’s motive for writing this article?
    9·2 answers
  • How do you put 1/2000 into scientific notation? *
    13·1 answer
  • Joe and Matt fight over the last piece of sushi. Joe uses his chopsticks to
    11·1 answer
  • an astronaut on an eva has wandered dangerously far away from the shuttle. she has also exhausted all the fuel in her jet pack.
    13·1 answer
  • a single rectangular slit of width of 50 is illuminated by red light with a wavelength of 600 nm. a screen is placed a certain d
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!