Answer: 1,760 centimeters
Step-by-step explanation: Your Answer is above
Answer:
Step-by-step explanation:
(x^2+y^2)^2=(x^2)^2+2x^2y^2+(y^2)^2
Adding and substracting 2x^2y^2
We get
(x^2+y^2)^2=(x^2)^2+2x^2y^2+(y^2)^2 +2x^2y^2-2x^2y^2
And we know a^2-2ab+b^2=(a-b)^2
So we identify (x^2)^2 as a^2 ,(y^2)^2 as b^2 and -2x^2y^2 as - 2ab. So we can rewrite (x^2+y^2)^2=(x^2 - y^2)^2 + 2x^2y^2 + 2x^2y^2= (x^2 - y^2)^2+4x^2y^2= (x^2 - y^2)^2+2^2x^2y^2
Moreever we know (a·b·c)^2=a^2·b^2·c^2 than means 2^2x^2y^2=(2x·y)^2
And (x^2+y^2)^2=(x^2 - y^2)^2 + (2x·y)^2
Answer:

Step-by-step explanation:

Bring constants to one side, simplify:

*Note that the inequality sign only changes when you divide the whole inequality by a negative number.
Answer:

Step-by-step explanation:

×
×




<em>hope this helps....</em>