Answer: 13.0m/s
Explanation:
26sin(30)=v in y-direction or vertical direction
v=26m/s*sin(30)=26m/s*(1/2)=13.0m/s
To solve this problem it is necessary to apply the concepts related to the Force from Hooke's law, the force since Newton's second law and the potential elastic energy.
Since the forces are balanced the Spring force is equal to the force of the weight that is


Where,
k = Spring constant
x = Displacement
m = Mass
g = Gravitational Acceleration
Re-arrange to find the spring constant



Just before launch the compression is 40cm, then from Potential Elastic Energy definition



Therefore the energy stored in the spring is 63.72J
This question is incomplete, the complete question is;
Car B is rounding the curve with a constant speed of 54 km/h, and car A is approaching car B in the intersection with a constant speed of 72 km/h. The x-y axes are attached to car B. The distance separating the two cars at the instant depicted is 40 m. Determine: the angular velocity of Bxy rotating frame (ω).
Answer:
the angular velocity of Bxy rotating frame (ω) is 0.15 rad/s
Explanation:
Given the data in the question and image below and as illustrated in the second image;
distance S = 40 m
V
= 54 km/hr
V
= 72 km/hr
α = 100 m
now, angular velocity of Bxy will be;
ω
= V
/ α
so, we substitute
ω
= ( 54 × 1000/3600) / 100
ω
= 15 / 100
ω
= 0.15 rad/s
Therefore, the angular velocity of Bxy rotating frame (ω) is 0.15 rad/s
Answer:
A+B+C= 135
A-B-C= 45
C-A-B= -85
Explanation:
you have very nice penmanship pls give brainliest
Answer:
e. design programming
Explanation:
The planning techniques are responsible for structuring the tasks to be performed within the project, defining the duration and the order of execution of the same, while the programming techniques try to organize the activities so that the logical temporal relationships between them, determining the calendar or the moments of time in which each one must be realized. The programming must be consistent with the objectives pursued and respect existing restrictions (resources, costs, workloads).
The programming therefore consists in setting, in an approximate way, the moments of beginning and termination of each activity. Some activities may have slack and others are critical activities (fixed over time).
STEPS:
Build a time diagram (moments of beginning and slack of activities).
Establish the times of each activity.
Analyze project costs and adjust clearances (minimum cost project).