The tension has to hold the part of the weight in the direction of the string:
T = mg*cos(theta)
Theta=0, whole weight, theta=90, T=0, if the pendulum is horizontal, the string will be loose! Yeah
I think it is there is no change in the energy's sunlight
Answer:
v = 1.2 m/s
Explanation:
The wavelength of the waves is given as the horizontal distance between the crests:
λ = wavelength = 5.5 m
Now, the time period is given as the time taken by boat to move from the highest point again to the highest point. So it will be equal to twice the time taken by the boat to travel from highest to the lowest point:
T = Time Period = 2(2.3 s) = 4.6 s
Now, the speed of the wave is given as:

where,
v= speed of wave = ?
f = frequency of wave = 
Therefore,

<u>v = 1.2 m/s</u>
Answer:
-5 V
Explanation:
The charged particle (which is positively charged) moves from point A to B, and its kinetic energy increases: it means that the particle is following the direction of the field, so its potential energy is decreasing (because it's been converted into potential energy), therefore it is moving from a point at higher potential (A) to a point at lower potential (B). This means that the value
vb−va
is negative.
We can calculate the potential difference between the two points by using the law of conservation of energy:

where:
is the change in kinetic energy of the particle
is the charge of the particle
is the potential difference
Re-arranging the equation, we can find the value of the potential difference:

Hey there!
The answer would be B. The sound moves from air to water.
Sound travels through different mediums. It goes fastest in solids, a little slower in liquids, and slowest in air. Sound is a very fast wave, but remember that mediums can differ that. In a vacuum space, there is no sound at all. (ex. outer space)
Hope this helps !