Displacement is a vector magnitude that depends on the position of the body which is individualistic for the trajectory.
While, Distance is a scalar magnitude that measures over the trajectory.
KHDMDCM.
Now go from Kilometer to Centimeter: 5.
Move the decimal 5 places to the right: 67,500,000 centimeters.
Hope this helps :)
Answer:
it is essential that the charge on the plates are of the same magnitude, but in the opposite direction
Explanation:
The configuration of parallel plates is called a capacitor and is widely used to create constant electric fields inside.
To obtain this field it is essential that the charge on the plates are of the same magnitude, but in the opposite direction
This is so that the fields created by each plate can be added inside and subtracted from the outside of the plates
Answer:
cutting the magnet in two parts each part has a North and South pole,
Explanation:
In magnetism the magnetic mono-poles are not found, this means that we do not have magnetic charges alone, therefore when cutting the magnet in two parts each part has a North and South pole, the magnetic lines go from the North pole to the South pole, see attached.
The density of the lines is approximately the intensity of the magnetic field.
Answer:
Option C. 30 m
Explanation:
From the graph given in the question above,
At t = 1 s,
The displacement of the car is 10 m
At t = 4 s
The displacement of the car is 40 m
Thus, we can simply calculate the displacement of the car between t = 1 and t = 4 by calculating the difference in the displacement at the various time. This is illustrated below:
Displacement at t = 1 s (d1) = 10 m
Displacement at t= 4 s (d2) = 40
Displacement between t = 1 and t = 4 (ΔD) =?
ΔD = d2 – d1
ΔD = 40 – 10
ΔD = 30 m.
Therefore, the displacement of the car between t = 1 and t = 4 is 30 m.