Answer:
The system's potential energy is -147 J.
Explanation:
Given that,
Energy = 147 J
We know that,
System is isolated and it is free from external forces.
So, the work done by the external forces on the system should be equal to zero.

We need to calculate the system's potential energy
Using thermodynamics first equation

Put the value into the formula


Hence, The system's potential energy is -147 J.
We're u can never put it back together
Answer:
Velocity and speed both are continuously increasing.
Acceleration is constant.
Explanation:
Speed is defined as length of path covered by a body per unit time. Speed is a scalar quantity that consist of magnitude only and not direction.
Velocity is defined as the displacement per unit times. Displacement is the shortest distance between the two points. It is a vector quantity and hence has a direction in the direction of displacement along with its own magnitude.
- Both velocity and speed have same unit of measure which is meter per second in S.I. During <em>free fall</em> in the absence of any air resistance the velocity and speed both will be having a vertical downward direction with continuously increasing magnitude. Tough we are not concerned about the direction when discussing about speed but here both are equal since the motion is linear.
Acceleration is the rate of change in velocity of a body which is a vector quantity. For speed we are concerned about instantaneous acceleration since for a short period of time it may have a specific direction.
- During free fall the acceleration is of a body is equal to the acceleration due to gravity and constant when the height of fall is much lesser than the radius of the earth.
Answer:
Explanation:
Part A) Using
light intensity I= P/A
A= Area= π (Radius)^2= π((0.67*10^-6m)/(2))^2= 1.12*10^-13 m^2
Radius= Diameter/2
P= power= 10*10^-3=0.01 W
light intensity I= 0.01/(1.12*10^-13)= 9*10^10 W/m^2
Part B) Using
I=c*ε*E^2/2
rearrange to solve for E=
((I*2)/(c*ε))
c is the speed of light which is 3*10^8 m/s^2
ε=permittivity of free space or dielectric constant= 8.85* 10^-12 F⋅m−1
I= the already solved light intensity= 8.85*10^10 W/m^2
amplitude of the electric field E=
(9*10^10 W/m^2)*(2) / (3*10^8 m/s^2)*(8.85* 10^-12 F⋅m−1)
---> E=
(1.8*10^11) / (2.66*10^-3) =
(6.8*10^13) = 8.25*10^6 V/m
Answer:
√(6ax)
Explanation:
Hi!
The question states that during a time t the motorcyle underwent a displacement x at constant acceleration a starting from rest, mathematically we can express it as:
x=(1/2)at^2
Then the we need to find the time t' for which the displacement is 3x
3x=(1/2)a(t')^2
Solving for t':
t'=√(6x/a)
Now, the velocity of the motorcycle as a function of time is:
v(t)=a*t
Evaluating at t=t'
v(t')=a*√(6x/a)=√(6*x*a)
Which is the final velocity
Have a nice day!