The Electric field is zero at a distance 2.492 cm from the origin.
Let A be point where the charge
C is placed which is the origin.
Let B be the point where the charge
C is placed. Given that B is at a distance 1 cm from the origin.
Both the charges are positive. But charge at origin is greater than that of B. So we can conclude that the point on the x-axis where the electric field = 0 is after B on x - axis.
i.e., at distance 'x' from B.
Using Coulomb's law,
,
= 



k is the Coulomb's law constant.
On substituting the values into the above equation, we get,

Taking square roots on both sides and simplifying and solving for x, we get,
1.67x = 1+x
Therefore, x = 1.492 cm
Hence the electric field is zero at a distance 1+1.492 = 2.492 cm from the origin.
Learn more about Electric fields and Coulomb's Law at brainly.com/question/506926
#SPJ4
Explanation:
The given data is as follows.
m = 5000 kg, h = 800 km = 
, r = R + h = 
kg, G = 
As we know that,

v = 
And, it is known that formula to calculate angular velocity is as follows.

v = 
= 
= 
Thus, we can conclude that speed of the satellite is
.
Answer:
0.5m
Explanation:
v=f×lamda
v is 300m/s, f is 600Hz, lamda is ?
lamda=v/f
lamda=300/600
lamda =3/6=1/2m
d. 49.0 m/s
<em><u>this</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>your</u></em><em><u> </u></em><em><u>answer</u></em><em><u>. </u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>OK</u></em><em><u>. </u></em><em><u>.</u></em><em><u>.</u></em>
<em><u>please</u></em><em><u> </u></em><em><u>mark</u></em><em><u> </u></em><em><u>me</u></em><em><u> </u></em><em><u>as</u></em><em><u> </u></em><em><u>brainliest</u></em><em><u>. </u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>
<em><u>follow</u></em><em><u> </u></em><em><u>me</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>my</u></em><em><u> </u></em><em><u>friend</u></em><em><u>. </u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>