The magnetic force experienced by the proton is given by

where q is the proton charge, v its velocity, B the magnitude of the magnetic field and

the angle between the direction of v and B. Since the proton moves perpendicularly to the magnetic field, this angle is 90 degrees, so

and we can ignore it in the formula.
For Netwon's second law, the force is also equal to the proton mass times its acceleration:

So we have

from which we can find the magnitude of the field:
A wave created by shaking a rope up and down is called a:
(According to me and certified experts) Transverse wave.
If this helps, then please give Brainliest!
Answer:
Explanation:
Both these questions are based on the Universal Law of Gravitation, which is given by :
F = Gm1m2 / r²
2) F = 6.67 x 10⁻¹¹ x 8 x 10³ x 1.5 x 10³ / 1.5 x 1.5
F = 6.67 x 10⁻⁵ x 8 / 1.5
F = 35.57 x 10⁻⁵ N
3) F = 6.67 x 10⁻¹¹ x 7.5 x 10⁵ x 9.2 x 10⁷ / 7.29 x 10⁴
F = 6.67 x 10⁻³ x 7.5 x 9.2 / 7.29
F = 63.13 x 10⁻³ N
The correct answer is:
Work is negative, the environment did work on the object, and the energy of the system decreases.
In fact, the work-energy theorem states that the work done by the system is equal to its variation of kinetic energy:

In this problem, the variation of kinetic energy
is negative (because the final velocity is less than the initial velocity), so the work is negative, and this means that the environment did work on the object, and its energy decreased.
Answer: 14. 49 m
Explanation:
We can solve this problem with the following equations:
(1)
(2)
Where:
is the horizontal distance between the cannon and the ball
is the cannonball initial velocity
since the cannonball was shoot horizontally
is the time
is the final height of the cannonball
is the initial height of the cannonball
is the acceleration due gravity
Isolating
from (2):
(3)
(4)
(5)
Substituting (5) in (1):
(6)
Finally: