Answer: n = 3.0 moles
V = 60.0 L
T = 400 K
From PV = nRT, you can find P
P = nRT/V = (3.0 mol)(0.0821 L-atm/K-mol)(400 K)/60.0L
P = 1.642 atm = 1.6 atm (to 2 significant figures)
Answer:
If you see in the image above, there is an unbalance force applied while playing tug of war. Since it is 1 vs 2, there is a greater net force in the right side then the left side. If it was 2 vs 2 or 1 vs 1, then they are appling balance force. You can also see in the picture that the arrows are pointing outwards (--->) rather then inwards (<---) because you are pulling the rope not pushing the rope. If you add one person on the left side, then the newtons which is 20N will become to 35N and will be balanced, but since there in only 1 person, there is less force on the left side, the newtons gets subtracted having only 20N. Since you are pulling the rope, the friction is opposite (<---). Since you are pulling the rope, you are using Kinetic force and the rope stays in potential force since it stays constant.
Hope this helps, thank you :) and I am not sure about magnitude I think you can that since there is greater force on the right side, there is more magnitude there.
The second stage of photosynthesis also called Calvin stage produces glucose
Answer:
The final state of the substance is a gas.
The sample is initially a liquid. One or more phase changes will occur.
Explanation:
Let's consider the phase diagram for Argon (not to scale).
<em>A sample of argon is initially at a pressure of 49.6 atm and a temperature of 101.4 K. The pressure on the sample is reduced to 0.680 atm at a constant temperature of 101.4 K. Which of the following are true? Choose all that apply </em>
<em>The final state of the substance is a gas.</em> TRUE. At 0.680 atm and 101.4 K, the substance is a gas.
<em>The gas initially present will solidify.</em> FALSE. Initially, Ar is present as a liquid.
<em>The final state of the substance is a solid.</em> FALSE.
<em>The sample is initially a liquid. One or more phase changes will occur.</em> TRUE. The sample is initially liquid and only one phase change will occur.
D = m / V
D = 2790 g / 205 mL
D = 13.60 g/mL