Answer:
Speed of the boat, v = 4.31 m/s
Explanation:
Given that,
Height of the bridge, h = 32 m
The model boat is 11 m from the point of impact when the key was released, d = 11 m
Firstly, we will find the time needed for the boat to get in this position using second equation of motion as :

Here, u = 0 and a = g


t = 2.55 seconds
Let v is the speed of the boat. It can be calculated as :


v = 4.31 m/s
So, the speed of the boat is 4.31 m/s. Hence, this is the required solution.
i do not have an answer because it depends on the size and the distance lol
This is something u are going to have to do
The members of these groups make up the majority of voters in many districts thus this be considered a problem.
<u>Option: D</u>
<u>Explanation:</u>
Interest groups play a key role in US politics. Such organizations are made up of wealthy and powerful members who often seek to impose some form of leverage in politicians to promote their goals and agendas. Across the years via many campaigns, they have understood how to speak and manipulate elected leaders and apply leverage to get the kind of legislation that is in their favor. Here the majority of voters in several districts are standing due to group members, as we recognize the interest group belongs to a body in which it uses different methods of lobbying to influence others.
A) 
The total energy of the system is equal to the maximum elastic potential energy, that is achieved when the displacement is equal to the amplitude (x=A):
(1)
where k is the spring constant.
The total energy, which is conserved, at any other point of the motion is the sum of elastic potential energy and kinetic energy:
(2)
where x is the displacement, m the mass, and v the speed.
We want to know the displacement x at which the elastic potential energy is 1/3 of the kinetic energy:

Using (2) we can rewrite this as

And using (1), we find

Substituting
into the last equation, we find the value of x:

B) 
In this case, the kinetic energy is 1/10 of the total energy:

Since we have

we can write

And so we find:
