Answer:
B.Ionizing radiation is the correct answer.
Explanation:
Ionizing radiation has sufficient energy that it can convert atoms and molecules into ions.
It has a sufficient amount of energy that it can separate tightly confined electrons from the orbit of an atom and causing that atom to become ionized.
Answer:
20 N/m
Explanation:
From the question,
The ball-point pen obays hook's law.
From hook's law,
F = ke............................ Equation 1
Where F = Force, k = spring constant, e = compression.
Make k the subject of the equation
k = F/e........................ Equation 2
Given: F = 0.1 N, e = 0.005 m.
Substitute these values into equation 2
k = 0.1/0.005
k = 20 N/m.
Hence the spring constant of the tiny spring is 20 N/m
Normally, the water pressure inside a pump is higher than the vapor pressure: in this case, at the interface between the liquid and the vapor, molecules from the liquid escapes into vapour form. Instead, when the pressure of the water becomes lower than the vapour pressure, molecules of vapour can go inside the water forming bubbles: this phenomenon is called
cavitation.
So, cavitation occurs when the pressure of the water becomes lower than the vapour pressure. In our problem, vapour pressure at

is 1.706 kPa. Therefore, the lowest pressure that can exist in the pump without cavitation, at this temperature, is exactly this value: 1.706 kPa.
Answer:
a) d = 6.0 m
Explanation:
Since car is accelerating at uniform rate then here we can say that the distance moved by the car with uniform acceleration is given as

here we know that



now we will have



Explanation:
distance and time both are scaler quantity