Answer:
a) fr = 224.3 N
, b) fr = 224.3 N
, c) v = 198.0 m/s
Explanation:
a) For this exercise let's start by calculating the acceleration in the fall
v² = v₀² - 2 a (y-y₀)
When it jumps the initial vertical speed is zero
a = -v² / 2 (y-y₀)
a = -68 2/2 (1000-2000)
a = 2,312 m / s²
Let's use the second net law to enter the average friction force
fr = m a
fr = 97 2,312
fr = 224.3 N
b) let's look for acceleration
v² = v₀² - 2 a y
a = (v² –v₀²) / 2 (y-y₀)
a = (4² - 68²) / 2 (0-1000)
a = 2,304 m / s²
fr = m a
fr = 97 2,304
fr = 223.5 N
c) the speed of the wallet is searched with kinematics
v² = v₀² - 2 g (y-y₀)
v = √ (0-2 9.8 (0-2000))
v = 198.0 m/s
Answer:
the answer is B
Explanation:
wave x has the highest hertz making it the answer
Answer:
How to find the maximum height of a projectile?
if α = 90°, then the formula simplifies to: hmax = h + V₀² / (2 * g) and the time of flight is the longest. ...
if α = 45°, then the equation may be written as: ...
if α = 0°, then vertical velocity is equal to 0 (Vy = 0), and that's the case of horizontal projectile motion.
Explanation: