Answer:
the observed frequency will reduce but the wavelength will increase
Explanation:
As we know
fo = fs (v/(v-vs))
fo = observed frequency
vs = velocity of source
As per this equation,
When an observer moves away from the stationary source, the observed frequency reduces. Since the observer in the balloon is moving away from the source which itself is moving in opposite direction, the observed frequency will reduce.
Since wavelength = V/fs . The source frequency is unchanged but the velocity is increasing as it is moving in downward direction. Hence, the wavelength will increase
Answer:
Inductive reactance is 125.7 Ω
Explanation:
It is given that,
Inductance, 
Voltage source, V = 15 volt
Frequency, f = 400 Hz
The inductive reactance of the circuit is equivalent to the impedance. It opposes the flow of electric current throughout the circuit. It is given by :




So, the inductive reactance is 125.7 Ω. Hence, this is the required solution.
Stop lines are solid white lines painted across the traffic lanes at intersections and pedestrian crosswalks, indicating the exact place to stop.
The correct option is (B) <span>Aluminum is a metal and is shiny, malleable, ductile, conducts heat and electricity, forms basic oxides, and forms cations in aqueous solution.
Since Aluminium is in group 13, and all the elements in group 13 are either metals or metalloids(Boron). Hence we are left with option (B) and (D). Boron is the only metalloid in group 13 and aluminium is a metal(not a metalloid); therefore, we are left with only one option which is Option (B). And Aluminium is </span>shiny, malleable, ductile, conducts heat and electricity, forms basic oxides, and forms cations in aqueous solution.<span>
</span><span>
</span>