Answer: Velocity terminal = 0.093m/s
Explanation:
1. We start by evaluating the gap distance between the two cylinders as h = R(sleeve) - R(cylinder)
= (0.0604/2 - 0.06/2)m
= 2×10^-4
Surface are of the cylinder in the drop, which is required in order to evaluate the shearing stress can be expressed as A(cylinder) = π.d.L
= (π×0.06×0.4)m²
= 0.075m²
Since the force of the cylinder's weight is going to balance the shearing force on the walls, we can express the next equation and derive terminal velocity from it.
Shearing stress = u×V.terminal/h = 0.86×V/0.0002
= 4300Vterminal
Therefore, Fw = shearing stress × A
30N = 4300Vterminal × 0.075
V. terminal = 30/4300 m.s
V. terminal = 0.093m/s
A watering can is used to hold a water that we will use to water the plants. The water has both mass and volume. Two watering cans are most often different by the volume they contain.
Many various units for volume are used but most often used unit is liter. In a metric system basic units are those such as meter, kilogram and liter while in imperial system units used are those such as foote, inch, pound and gallon.
Unit for volume in metric system is cubic meter. It is equal to a volume of a cube whose all sides measure 1m. This is equal to 1000L. For watering cans that contain several liters units used is decimeter cubed. 1dm^3 = 1L