Answer:
Mass = 17.8 g
Explanation:
Given data:
Number of atoms of Ca = 2.68 × 10²³
Mass in gram = ?
Solution:
Avogadro number:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
1 mole = 6.022 × 10²³ atoms
2.68 × 10²³ atoms × 1 mole /6.022 × 10²³ atoms
0.445 mol
Mass in gram;
Mass = number of moles × molar mass
Mass = 0.445 mol × 40 g/mol
Mass = 17.8 g
Answer: The first isotope has a relative abundance of 79% and last isotope has a relative abundance of 11%
Explanation: Given that the average atomic mass(M) of magnesium
= 24.3050amu
Mass of first isotope (M1) = 23.9850amu
Mass of middle isotope (M2)=24.9858amu
Mass of last isotope(M3)= 25.9826amu
Total abundance = 1
Abundance of middle isotope = 0.10
Let abundance of first and last isotope be x and y respectively.
x+0.10+y =1
x = 0.90-y
M = M1 × % abundance of first isotope + M2 × % of middle isotope +M3 ×% of last isotope
24.03050= 23.985× x + 24.9858 ×0.10 + 25.9826×y
Substitute x= 0.90-y
Then
y = 0.11
Since y=0.11, then
x= 0.90-0.11
x=0.79
Therefore the relative abundance of the first isotope = 11% and the relative abundance of the last isotope = 79%
Answer:
T2=540K or 267°c
Explanation:
- NZ 278°c, 0.625 atm P1/T1=P2/T2
- (27-->273=300K)
- T=?, 1.125 atm
- 0.625/300=1.125/T2
-
≠T2=
(divided both sides by 0.625)
Ans: T2=540K or 267°c How to get 267°c just subtract 540 from 273
Answer:
Heisenberg's Uncertainty Principle states that there is inherent uncertainty in the act of measuring a variable of a particle. Commonly applied to the position and momentum of a particle, the principle states that the more precisely the position is known the more uncertain the momentum is and vice versa.