Answer:
There are four laws of thermodynamics that define fundamental physical quantities (temperature, energy, and entropy) and that characterize thermodynamic systems at thermal equilibrium.
Explanation:
Answer:
The correct answer is -
FALSIFIABLE:
Aloe vera gel can heal wounds by boosting cell renewal.
Drinking aloe juice can reduce the risk of lung cancer.
NON-FALSIFIABLE:
Aloe vera gel is the best natural skin moisturizer.
Aloe vera juice tastes better than carrot juice.
Explanation:
Falsifiable is the ability or chances of any hypothesis, claim or statement to be proved wrong. In such a hypothesis, it is possible to carry an experimental observation that disproves the idea in claim or question.
In the given examples
Aloe vera gel can heal wounds by boosting cell renewal.
Drinking aloe juice can reduce the risk of lung cancer.
There is no observation in the favor of the claim so there more likely to be falsifiable whereas, Aloe vera gel is the best natural skin moisturizer.
Aloe vera juice tastes better than carrot juice are more non-falsifiable as these are based on personal choice or experimental observation.
Answer:
the unknown substance is a protein
Explanation:
The biuret test is one of the tests for proteins. It can be used to detect peptide linkages. The biuret test is carried out in an alkaline solution. A coordination complex is formed leading to the appearance of a violet color.
Summarily, the biuret method is a colorimetric technique used to test for proteins and peptides. It involves the formation of a purple (violet) complex of Copper salts in alkaline solution.
Hence when the biuret reagent is added to an unknown substance and it turns purple, the unknown substance is a protein
(missing part of your question):
when we have K = 1 x 10^-2 and [A] = 2 M & [B] = 3M & m= 2 & i = 1
So when the rate = K[A]^m [B]^i
and when we have m + i = 3 so the order of this reaction is 3 So the unit of K is L^2.mol^-2S^-1
So by substitution:
∴ the rate = (1x 10 ^-2 L^-2.mol^-2S^-1)*(2 mol.L^-1)^2*(3mol.L^-1)
= 0.12 mol.L^-1.S^-1
Answer:
283.725 kJ ⋅ mol − 1
Explanation:
C(s) + 2Br2(g) ⇒ CBr4(g) , Δ H ∘ = 29.4 kJ ⋅ mol − 1
Br2(g) ⇒ Br(g) , Δ H ∘ = 111.9 kJ ⋅ mol − 1
C(s) ⇒ C(g) , Δ H ∘ = 716.7 kJ ⋅ mol − 1
4*eqn(2) + eqn(3) ⇒ 2Br2(g) + C(s) ⇒ 4 Br(g) + C(g) , Δ H ∘ = 1164.3 kJ ⋅ mol − 1
eqn(1) - eqn(4) ⇒ 4 Br(g) + C(g) ⇒ CBr4(g) , Δ H ∘ = -1134.9 kJ ⋅ mol − 1
so,
average bond enthalpy is
= 283.725 kJ ⋅ mol − 1