Answer:
The resistance that will provide this potential drop is 388.89 ohms.
Explanation:
Given;
Voltage source, E = 12 V
Voltage rating of the lamp, V = 5 V
Current through the lamp, I = 18 mA
Extra voltage or potential drop, IR = E- V
IR = 12 V - 5 V = 7 V
The resistance that will provide this potential drop (7 V) is calculated as follows:
IR = V

Therefore, the resistance that will provide this potential drop is 388.89 ohms.
Answer:
1 astronomical unit is the average distance from the Earth to the Sun; approximately 150 million km. At its closest point, Saturn is 9 AU, and then at its most distant point, it's 10.1 AU. Saturn's average distance from the Sun is 9.6 AU. We have written many articles about Saturn for Universe Today.
Explanation:
Answer:
Explanation:
s = s₀ + v₀t + ½at²
s = 0 + 0(15) + ½(6)(15²)
s = 675 m
Not sure what the free fall acceleration is needed for, but if the object is dropped from a high enough point, it will travel in 15 seconds
s = ½10(15²) = 2250 m if air resistance is ignored
Explanation:
Bulbs are nothing but resistors that glow when current passes through them.
In Set A, the bulbs (resistors) are connected parallely to each other, this means that even if one of the bulbs fuses or removed, the circuit will still be completed and others continue to glow.
And in parallel connection if the resistance of the two resistors are same powered delivered to each is same.
In Set B, bulbs are in series connection, this means that when one of the bulb is removed or fuses, the circuit will break and other bulbs can not operate.In this situation as well if the resistance of two resistors is same then the power delivered is same.
Answer: B 100 J
Explanation: Pic Attached. Hope This Helps.