Answer:
Wavelength of radiation is 0.375×10⁻⁶ m
Explanation:
Given data:
Frequency of radiation = 8.0×10¹⁴ Hz
Wavelength of radiation = ?
Solution:
Frequency and wavelength of lights are inversely proportional to each other.
The wave of light having highest frequency have shortest wavelength and the light with the shortest frequency having highest wavelength.
Formula:
Speed of light = wavelength × frequency
c = λ × f
λ = c/f
This formula shows that both are inversely related to each other.
The speed of light is 3×10⁸ m/s
Frequency is taken in Hz.
It is the number of oscillations, wave of light make in one second.
Wavelength is designated as "λ" and it is the measured in meter. It is the distance between the two crust of two trough.
Now we will put the values in formula.
λ = 3×10⁸ m/s / 8.0×10¹⁴ Hz
λ = 0.375×10⁻⁶ m
<u>Answer:</u> The average rate of the reaction is 
<u>Explanation:</u>
To calculate the molarity of hydrogen gas generated, we use the equation:

Moles of hydrogen gas = 
Volume of solution = 250 mL = 0.250 L (Conversion factor: 1 L = 1000 mL)
Putting values in above equation, we get:

Average rate of the reaction is defined as the ratio of concentration of hydrogen generated to the time taken.
To calculate the average rate of the reaction, we use the equation:

We are given:
Concentration of hydrogen generated = 0.1564 M
Time taken = 20.0 minutes
Putting values in above equation, we get:

Hence, the average rate of the reaction is 
Answer:
oh it's easy
Explanation:
Take the hydrate
N
a
2
S
2
O
3
∙
5
H
2
O
. Are there ionic forces between the
N
a
+
and the
S
2
O
2
−
3
and ion-dipole forces between the cation/anions and the water?
Answer:
0.043 M
Explanation:
The reaction that takes place is:
- Ca(OH)₂ + 2HCl → CaCl₂ + 2H₂O
First we <u>calculate how many HCl moles reacted</u>, using the <em>given concentration and volume required to reach the equivalence point</em>:
- 0.029 M HCl * 37.3 mL = 1.0817 mmol HCl = 1.0817 mmol H⁺
As 1 mol of H⁺ reacts with 1 mol of OH⁻, in the 25.0 mL of the Ca(OH)₂ sample there are 1.0817 mmoles of OH⁻.
With that in mind we can <u>calculate the hydroxide ion concentration in the original sample solution</u>, using <em>the calculated number of moles and given volume</em>:
- 1.0817 mmol OH⁻ / 25.0 mL = 0.043 M
Answer:
Olá, a resposta que você está procurando é, na verdade, plasma mais refração. Eu estou usando um tradutor para ajudá-lo agora, então eu espero que você não se importe.
Explanation: