B i like to believe :))))
explain: 73626262hdjsgsgagfjnbvfsad
Answer:
V = 27.46 m/s
Explanation:
given,
mass of the deer(m) = 135 Kg
speed of the deer (u) = 10.5 m/s
assuming,
mass of the car(M) = 900 Kg
initial velocity of car (v) = 30 m/s
using conservation of momentum
m u + M v = (M + m )V
V is the velocity of the car as deer is on the car
135 x 10.5 + 900 x 30 = (900 + 135 ) V
28417.5 = 1035 V
V = 27.46 m/s
so, the velocity of car is equal to V = 27.46 m/s
<span>The distance between two objects is increased by three times the oringinal distance. Since they were already separated by one time the original distance,
the additional three times the oringinal distance now puts them four times the original distance apart.
Whether we're talking about the gravitational forces of attraction or
the electrical forces of attraction, either one is inversely proportional
to the square of the distance between the objects.
So changing the distance to four times the original distance causes
the forces to become 1/4</span>² as strong as they were originally.
The forces become 1/16 of their original magnitude.<span>
</span>
the wavelength equation is
speed (of light in this
case)= wavelength (m) x frequency
3x10^8m/s / .07m = f
frequency= 4 285 714 286
hertz
b) Total distance= 4.8 km
(4,800 m)
Speed = 3x10^8 m/s
d=st
t= d/s
t= 4,800 m/3x10^8m/s
<span>t= 1x10^-5 seconds</span>
The basic formula for power is P=W/t meaning it is the rate at which work is accomplished.