1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
malfutka [58]
3 years ago
10

A rock is rolling down a hill. At position 1, its velocity is 2.0 m/s. Twelve seconds later, as it passes position 2, its veloci

ty is 44.0 m/s. What is the acceleration of the rock?
Physics
2 answers:
Alenkinab [10]3 years ago
8 0

Answer:

The correct answer is 3.5 m/s²

Explanation:

To determine the average acceleration of the rock,

the change in velocity is divided by the time interval (in seconds)

change in velocity = V₂ - V₁

where V₁ is the initial velocity (2.0 m/s) and V₂ is the final velocity (44.0 m/s)

change in velocity = 44 - 2 = 42 m/s

The time interval is 12 seconds (no need for conversion as it is in seconds already)

average acceleration of the rock = 42 ÷ 12 = 3.5 m/s²

alukav5142 [94]3 years ago
4 0
As this happens over twelve seconds, you would take the total difference in velocities and divide it by twelve to find the change per second

44.0 m/s - 2.0 m/s = 42.0 m/s 

42.0 m/s / 12 s = 3.5 m/s2

the acceleration of the rock would be 3.5 m/s2
You might be interested in
I was watching quantum leap and I was wondering if we can actually travel through different people's body without knowing it's a
alukav5142 [94]

Answer:

No you could not do that because if you tried even if you where to go super fast they would feel a breif second of pain before being completely riped from there body

7 0
2 years ago
An initially uncharged 3.47-μF capacitor and a 6.43-kΩ resistor are connected in series to a 1.50-V battery that has negligible
harkovskaia [24]

Answer: a) io=233.28 A ( initial current); b) τ=R*C= 22.31 ms; c) 81.7 ms

Explanation:  In order to explain this problem we have to use, the formule for the variation of the current in a RC circuit:

I(t)=io*Exp(-t/τ)

and also we consider that io=V/R=(1.5/6.43*10^3)

=233.28 A

then the time constant for the RC circuit is τ=R*C=6.43*10^3*3.47*10^-6

=22.31 ms

Finally the time to reduce the current to 2.57% of its initial value is obtained from:

I(t)=io*Exp(-t/τ)  for I(t)/io=0.0257=Exp(-t/τ) then

ln(0.0257)*τ =-t

t=-ln(0.0257)*τ=81.68 ms

3 0
3 years ago
At which temperature does the motion of atoms and molecules stop?
Scorpion4ik [409]

Answer:

0 Kelvin

Explanation:

Atoms in absolute temperature get approximatelly motionless since 0 Kelvin is -273 degrees Celcius. The kinetic energy of atoms/particles in matter has the possible lowest value ( almost zero), so that there is nothing colder than 0 Kelvin.

4 0
3 years ago
Brad walks and jogs to schooll every day. He averages 5 km/hr walking and 9 km/hr jogging. The distane from home to shool is 6 k
Vitek1552 [10]
We know that
Distance = speed x time
Let w be the time Brad spent walking. The time spent jogging will be 1 - w
6 = 5w + 9(1 - w)
w = 0.75 hours
Distance walked = 0.75 x 5
= 3.75 km
5 0
3 years ago
A baseball, which has a mass of 0.685 kg., is moving with a velocity of 38.0 m/s when it contacts the baseball bat duringwhich t
Evgen [1.6K]

Answers:

a) 65.075 kgm/s

b) 10.526 s

c) 61.82 N

Explanation:

<h3>a) Impulse delivered to the ball</h3>

According to the Impulse-Momentum theorem we have the following:

I=\Delta p=p_{2}-p_{1} (1)

Where:

I is the impulse

\Delta p is the change in momentum

p_{2}=mV_{2} is the final momentum of the ball with mass m=0.685 kg and final velocity (to the right) V_{2}=57 m/s

p_{1}=mV_{1} is the initial momentum of the ball with initial velocity (to the left) V_{1}=-38 m/s

So:

I=\Delta p=mV_{2}-mV_{1} (2)

I=\Delta p=m(V_{2}-V_{1}) (3)

I=\Delta p=0.685 kg (57 m/s-(-38 m/s)) (4)

I=\Delta p=65.075 kg m/s (5)

<h3>b) Time </h3>

This time can be calculated by the following equations, taking into account the ball undergoes a maximum compression of approximately 1.0 cm=0.01 m:

V_{2}=V_{1}+at (6)

V_{2}^{2}=V_{1}^{2}+2ad (7)

Where:

a is the acceleration

d=0.01 m is the length the ball was compressed

t is the time

Finding a from (7):

a=\frac{V_{2}^{2}-V_{1}^{2}}{2d} (8)

a=\frac{(57 m/s)^{2}-(-38 m/s)^{2}}{2(0.01 m)} (9)

a=90.25 m/s^{2} (10)

Substituting (10) in (6):

57 m/s=-38 m/s+(90.25 m/s^{2})t (11)

Finding t:

t=1.052 s (12)

<h3>c) Force applied to the ball by the bat </h3>

According to Newton's second law of motion, the force F is proportional to the variation of momentum  \Delta p in time  \Delta t:

F=\frac{\Delta p}{\Delta t} (13)

F=\frac{65.075 kgm/s}{1.052 s} (14)

Finally:

F=61.82 N

6 0
3 years ago
Read 2 more answers
Other questions:
  • All describe the relationship of the parts of an electrical current except: _________.
    6·2 answers
  • A box of groceries requires 5.0 Newton’s of force to lift it up 1.0 meter how much work is done
    6·2 answers
  • A temperature of 34 fereheight is equal to blank kelvin
    12·2 answers
  • Earth has four motions in its movement through space, rotation, revolution, processional, and solar motion, which two are of any
    9·1 answer
  • A simple pendulum consists of a 4.9 kg point mass hanging at the end of a 3.1 m long light string that is connected to a pivot p
    8·1 answer
  • When a tuning fork of frequency 201 Hz vi-brates beside a piano string, beats are heard.The string is tightened slightly and the
    9·1 answer
  • There's more to motion than simply changing position. True Or False
    15·2 answers
  • The slope of a distance-versus-time graph shows an object's
    7·1 answer
  • 2. A car is sitting at the top of a hill that is 14 m high. The car has a mass of 53 kg. The car has
    7·1 answer
  • 3. A bottle of vitamin C contains 100 tablets and weighs 80 g. If the
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!