Answer:
v' = 1.21 m/s
Explanation:
Mass of a green ball, m = 0.525 kg
Mass of a blue ball, m' = 0.482 kg
Initial velocity of green ball, u = 2.26 m/s
Initial velocity of blue ball, u' = 0 (at rest)
After the collision,
The final velocity of the green ball, v = 1.14 m/s
We need to find the final velocity of the blue ball after the collision if the collision is head on. Let v' is the final velcity of the blue ball. Using the conservation of momentum to find it :

So, the final velocity of the blue ball is 1.21 m/s.
Answer:
F = M a is the vector equation involved
F = T - M g are the forces acting on the elevator (scalar equation)
T - M g = M a
T = M (a + g) remember this a scalar
If a is slowing down then it must have a positive acceleration upwards
Therefor the tension in the cable must be greater than zero
When the tension increases to M g, a has increased to zero
For a to be zero, no acceleration, T = M g
Answer:
85 miles .
Explanation:
Displacement along the 110 South freeway = 260 - 150 = 110 miles
Displacement along the 110 North freeway = 150 - 175 = - 25 miles
Net displacement = 110 - 25 = 85 miles
So Joey's displacement from the 260 mile marker is 85 miles .
<span>The intensity of an earthquake is dependent on one's proximity to the focus of the quake, also called the "epicenter" and is based on observations of the shaking of the ground on humans, structures, and the natural landscape.</span>
I think by using data collected by Tycho Brahe