Gases are less dense and the molecules are farther apart which means that it can be compressed
I thought the answer is d
M=70.0 g
p=0.70 g/mL
v=m/p
v=70.0/0.70=100.00 mL
Answer:
2VO + 3Fe2O3 —> V2O5 + 6FeO
Explanation:
The skeletal equation for the reaction is given below below:
VO + Fe2O3 —> V2O5 + FeO
We can balance the equation above by doing the following:
There are 2 atoms of V on the right side and 1 atom on the left side. It can be balance by putting 2 in front of VO as shown below:
2VO + Fe2O3 —> V2O5 + FeO
Now, we have a total of 5 atoms of O on the left and 6 atoms on the right side. We can balance it by putting 3 in front of Fe2O3 and 6 in front of FeO as shown below:
2VO + 3Fe2O3 —> V2O5 + 6FeO
Now, we can see that the equation is balanced
Answer:
ΔG = -6.5kJ/mol at 500K
Explanation:
We can find ΔG of a reaction using ΔH, ΔS and absolute temperature with the equation:
ΔG = ΔH - TΔS
Computing the values in the problem:
ΔG = ?
ΔH = 2kJ/mol
T = 500K
And ΔS = 0.017kJ/(K•mol)
Replacing:
ΔG = 2kJ/mol - 500K*0.017kJ/(K•mol)
ΔG = 2kJ/mol - 8.5kJ/mol
<h3>ΔG = -6.5kJ/mol at 500K</h3>