. The energy of shells in a hydrogen atom is calculated by the formula E = -Eo/n^2 where n is any integer, and Eo = 2.179X10^-18 J. So, the energy of a ground state electron in hydrogen is:
E = -2.179X10^-18 J / 1^2 = -2.179X10^-21 kJ
Consequently, to ionize this electron would require the input of 2.179X10^-21 kJ
2. The wavelength of a photon with this energy would be:
Energy = hc/wavelength
wavelength = hc/energy
wavelength = 6.626X10^-34 Js (2.998X10^8 m/s) / 2.179X10^-18 J = 9.116X10^-8 m
Converting to nanometers gives: 91.16 nm
3. Repeat the calculation in 1, but using n=5.
4. Repeat the calculation in 2 using the energy calculated in 3.
Answer: option c. the mixing of solute and solvent molecules
Explanation:
Answer:
The specific heat capacity of glass is 0.70J/g°C
Explanation:
Heat lost by glass = heat gained by water
Heat lost by glass = mass × specific heat capacity (c) × (final temperature - initial temperature) = 58.5×c×(91.2 - 21.7) = 4065.75c
Heat gained by water = mass × specific heat capacity × (final temperature - initial temperature) = 250×4.2×(21.7 - 19) = 2835
4065.75c = 2835
c = 2835/4065.75 = 0.70J/g°C