Answer:
the one with less thermal energy
Explanation:
thermal energy is heat
The correct answer for the question that is being presented above is this one: "Electrovalency is characterized with the transferring of one or more electrons from one atom to another together with the formation of ions and as well as the number of positive and negative charges.
The Lewis and Langmuir theory of electrovalency (and as well as Kossel's) is dealing with Ionic bonds.
Lewis: electron-pair sharing, octet rule, Lewis Symbols or StructureLangmuir: introduced term "covalent" bond, and popularized Lewis's ideas
<span>The Lewis-Langmuir electron-pair or covalent bond is referred as the homopolar bond, where the complete transfer of electrons give rise to ionic, or electrovalent bond (1) through attraction of opposite charges.</span>
Hey there :
Molar mass of NaCl = 58.44 g/mol
Number of moles :
n = mass of solute / molar mass
n = 58 / 58.44
n = 0.9924 moles of NaCl
Volume = 1.0 L
Therefore:
Molarity = number of moles / volume ( L )
Molarity = 0.9924 / 1.0
Molarity = 0.9924 M
Hope that helps!
Answer:
pH = 4.27. Porcentaje de disociación: 0.03%
Explanation:
El pH de un ácido débil, HX, se obtiene haciendo uso de su equilibrio:
HX(aq) ⇄ H⁺(aq) + X⁻(aq)
Donde la constante de equilibrio, Ka, es
Ka = 1.65x10⁻⁸ = [H⁺] [X⁻] / [HX]
Como los iones H⁺ y X⁻ vienen del mismo equilibrio podemos decir:
[H⁺] = [X⁻]
[HX] es:
20g * (1mol/55g) = 0.3636moles / 2.100L = 0.1732M
Reemplazando es Ka:
1.65x10⁻⁸ = [H⁺] [H⁺] / [0.1732M]
2.858x10⁻⁹ = [H⁺]²
5.35x10⁻⁵M = [H⁺]
pH = -log[H⁺]
<h3>pH = 4.27</h3>
El porcentaje de disociacion es [X⁻] / [HX] inicial * 100
Reemplazando
5.35x10⁻⁵M / 0.1732M * 100
<h3>0.03%</h3>