Answer:
3.6 kHz
Explanation:
The pipes behave like a closed pipe . The end open is the end of the air canal outside the ear and the closed end is the eardrum.
The first harmonic will be as seen in the figure attached.
The length of the first harmonic will be λ/4.
λ/4=2.4 cm
λ=2.4 * 4=9.6 cm 0.096 m
Speed of Sound- 344 m/s(in air)
velocity(v) * Time Period(T) = Wavelength (λ)
Also, Time Period(T)= \frac{\textrm{1}}{\textrm{Frequency(f)}}
\frac{\textrm{Velocity}}{\textrm{Wavelength}}=\frac{\textrm{1}}{\textrm{Time Period}} =Frequency
Plugging in the values into the equation,
Frequency =
Hz
= 3583.3 Hz≈3600 Hz= 3.6 kHz
Frequency= 3.6 kHz
4959167 is how many cubic meters in 10,000 gallons of water
Answer:
1) Motion of air mass moving from equator northward (closer to earth axis)
2) Motion of object in orbit
3) Collision of 2 objects
4) Skater changing rotation by extension of arms
5) Motion of rocket due to velocity of expelled gas
Answer:
The velocity of the photo electron is
.
Explanation:
Given that,
Supplied energy, 
Minimum energy of the electron to escape from the metal, 
We need to find the velocity of the photo electron. The energy supplied by the photon is equal to the sum of minimum escape energy and the kinetic energy of the escaping electron. So,

The formula of kinetic energy is given by :

So, the velocity of the photo electron is
.
Answer:
Measurements are an important part of comparing things, as they provide the basis on comparing objects to other objects. Measurements allow us to recognize three hours and see how it's shorter than five hours, without having to observe the hours passing by themselves.