1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dafna11 [192]
3 years ago
13

A trapeze artist swings in simple harmonic motion with a period of 3.8 s.

Physics
1 answer:
pogonyaev3 years ago
7 0
As we know that time period of simple pendulum is given as

T = 2π √L/g

here we know that

T = 3.8 s

now from above equation we know that

T² = 4π² (L/g)

now on rearranging the above equation we will have

L = gT² / 4π²

now plug in all data into it

L = (9.8) (3.8)² / (4) (3.14)²

so the length of the cable must be 3.6 m
You might be interested in
A 3.0 kg object moving 8.0 m/s in the positive x direction has a one-dimensional elastic collision with an object (mass = M) ini
finlep [7]
<h2>Option 2 is the correct answer.</h2>

Explanation:

Elastic collision means kinetic energy and momentum are conserved.

Let the mass of object be m and M.

Initial velocity object 1 be u₁,  object 2 be u₂

Final velocity object 1 be v₁,  object 2 be v₂

Initial momentum = m x u₁ + M x u₂ = 3 x 8 + M x 0 = 24 kgm/s

Final momentum = m x v₁ + M x v₂ = 3 x v₁ + M x 6 = 3v₁ + 6M

Initial kinetic energy = 0.5 m x u₁² + 0.5 M x u₂² = 0.5 x 3 x 8² + 0.5 x M x 0² = 96 J

Final kinetic energy = 0.5 m x v₁² + 0.5 M x v₂² = 0.5 x 3 x v₁² + 0.5 x M x 6² = 1.5 v₁² + 18 M

We have

            Initial momentum = Final momentum

            24 = 3v₁ + 6M

            v₁ + 2M = 8

             v₁ = 8 - 2M

            Initial kinetic energy = Final kinetic energy

            96 = 1.5 v₁² + 18 M

            v₁² + 12 M = 64

Substituting  v₁ = 8 - 2M

           (8 - 2M)² + 12 M = 64    

           64 - 32M + 4M² + 12 M = 64    

            4M² = 20 M

               M = 5 kg

Option 2 is the correct answer.  

6 0
2 years ago
In the photoelectric effect, a photon with an energy of 5.3 × 10–19 J strikes an electron in a metal. Of this energy, 3.6 × 10–1
valentina_108 [34]

Answer:

The velocity of the photo electron is 6.11\times 10^5\ m/s.

Explanation:

Given that,

Supplied energy, E_s=5.3\times 10^{-19}\ J

Minimum energy of the electron to escape from the metal, E_e=3.6\times 10^{-19}\ J

We need to find the velocity of the photo electron. The energy supplied by the photon is equal to the sum of minimum escape energy and the kinetic energy of the escaping electron. So,

5.3\times 10^{-19}\ J=3.6\times 10^{-19}\ J+K\\\\K=5.3\times 10^{-19}-3.6\times 10^{-19}\\\\K=1.7\times 10^{-19}\ J

The formula of kinetic energy is given by :

K=\dfrac{1}{2}mv^2\\\\v=\sqrt{\dfrac{2K}{m}} \\\\v=\sqrt{\dfrac{2\times 1.7\times 10^{-19}}{9.1\times 10^{-31}}} \\\\v=6.11\times 10^5\ m/s

So, the velocity of the photo electron is 6.11\times 10^5\ m/s.

4 0
3 years ago
While jumping on a trampoline you calculate that at the highest peak of your jump you have 900 joules of gravitational potential
BabaBlast [244]

Jumping on a trampoline is a classic example of conservation of energy, from potential into kinetic. It also shows Hooke's laws and the spring constant. Furthermore, it verifies and illustrates each of Newton's three laws of motion.

<u>Explanation</u>

When we jump on a trampoline, our body has kinetic energy that changes over time. Our kinetic energy is greatest, just before we hit the trampoline on the way down and when you leave the trampoline surface on the way up. Our kinetic energy is 0 when you reach the height of your jump and begin to descend and when are on the trampoline, about to propel upwards.

Potential energy changes along with kinetic energy. At any time, your total energy is equal to your potential energy plus your kinetic energy. As we go up, the kinetic energy converts into potential energy.

Hooke's law is another form of potential energy. Just as the trampoline is about to propel us up, your kinetic energy is 0 but your potential energy is maximized, even though we are at a minimum height. This is because our potential energy is related to the spring constant and Hooke's Law.

8 0
3 years ago
Under which condition does Ohm's law apply? a. The current must be constant b. The power must be constant c. The temperature mus
ruslelena [56]

Answer:

option c

Explanation:

The temperature must be constant. Ohms law states that the current running through a conductor is directly proportional to the potential difference across it provided the temperature remains constant

6 0
2 years ago
A car speeding down the highway honks its horn, which has a frequency 392 Hz, but a resting bystander hears the frequency 440 Hz
Natali [406]

Answer:

37.42 m/s

Explanation:

We know that apparent frequency, \bar f is given by

\bar f=f\frac {V}{V-V_s} where f is the given frequency in this case 392, V is the speed of sound in air which is given as 343 and V_s is the speed of car which is unknown, \bar f is given as 440 Hz

440=392\times \frac {343}{343-V_s}\\343-V_s=392\times \frac {343}{440}=305.5818182\\V_s=343-305.5818182=37.41818182\approx 37.42 m/s

8 0
2 years ago
Other questions:
  • Light traveling from water to a gemstone strikes the surface at an angle of 80.0º and has an angle of refraction of 15.2º . (a)
    9·1 answer
  • An object is released from rest at a height h. During the final second of its fall, it traverses a distance of 38m. Determine th
    5·2 answers
  • Jkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
    15·1 answer
  • Explain, using your own example why you must always give a unit when reporting a measurement.
    14·1 answer
  • Why is my 2002 dodge caravan 3.3 liter disabling my electric components?
    9·1 answer
  • A 76.5 kg cross-country skier skiing on unwaxed skis along dry snow at a constant speed of 4.00 m/s experiences a force of frict
    12·1 answer
  • A supertrain with a proper length of 100 m travels at a speed of 0.950c as it passes through a tunnel having a proper length of
    6·1 answer
  • There is up to 30 times more gold in a tons of old mobile phones than in a tons of gold ore. true or false
    11·1 answer
  • Suggest a form of renewable energy that could be used to power an electric ticket machine that only needs to work during dayligh
    6·2 answers
  • Two motorcycles travel along a straight road heading due north. At t = 0 motorcycle 1 is at x = 50 m and moves with a constant s
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!