Answer:
Explanation:
These tectonic plates rest upon the convecting mantle, which causes them to move. The movements of these plates can account for noticeable geologic events such as earthquakes, volcanic eruptions, and more subtle yet sublime events, like the building of mountains.
Answer:
Time needed: 2.5 s
Distance covered: 31.3 m
Explanation:
I'll start with the distance covered while decelerating. Since you know that the initial speed of the car is 15.0 m/s, and that its final speed must by 10.0 m/s, you can use the known acceleration to determine the distance covered by
v2f=v2i−2⋅a⋅d
Isolate d on one side of the equation and solve by plugging your values
d=v2i−v2f2a
d=(15.02−10.02)m2s−22⋅2.0ms−2
d=31.3 m
To get the time needed to reach this speed, i.e. 10.0 m/s, you can use the following equation
vf=vi−a⋅t, which will get you
t=vi−vfa
t=(15.0−10.0)ms2.0ms2=2.5 s
Answer:
1.97 seconds
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.8 m/s²

Solving the above equation we get

So, the time the package was in the air is 1.97 seconds
The correct answer is letter C. Volume is decreasing. For a fixed amount of an ideal gas kept at a fixed temperature, pressure and volume<span> are </span>inversely proportional<span>. </span>