Answer:
Exact answer: a form of energy resulting from the existence of charged particles (such as electrons or protons), either statically as an accumulation of charge or dynamically as a current.
The two ways you can use to make an informal survey are:
- make field observations
- interview people using informal unstructured techniques
<h3>What are informal surveys?</h3>
In informal surveys can be regarded as a type of survey that can be made by the researcher by going to the field themselves and this can be done by using different methods or ways.
For instance, the researcher can go out to interview people that can give the data that is needed about the research such as informally asking them questions, unstructured techniques can also be used to solve critical issues.
learn more about survey at: brainly.com/question/6947486
#SPJ9
Answer:
20.87 Pa
Explanation:
The formula for dynamic pressure is given as;
q= 1/2*ρ*v²
where ;
q=dynamic pressure
ρ = density of fluid
v = velocity of fluid
First find v by applying the formula for flow rate as;
Q = v*A where ;
Q= fluid flow rate
v = flow velocity
A= cross-sectional area.
A= cross-sectional vector area of the pipe given by the formula;
A= πr² = 3.14 * 4² = 50.27 in² where r=radius of pipe obtained from the diameter given divided by 2.
Q = fluid flow rate = 105 gpm----change to m³/s as
1 gpm = 0.00006309
105 gpm = 105 * 0.00006309 = 0.006624 m³/s
A= cross-sectional vector area = 50.27 in² -------change to m² as:
1 in² = 0.0006452 m²
50.27 in² = 50.27 * 0.0006452 = 0.03243 m²
Now calculate flow velocity as;
Q =v * A
Q/A = v
0.006624 m³/s / 0.03243 m² =v
0.2043 m/s = v
Now find the dynamic pressure q given as;
q= 1/2 * ρ*v²
q= 1/2 * 1000 * 0.2043² = 20.87 Pa
The friction loss in the system is 3.480 kilowatts.
<h2>Procedure - Friction loss through a pump</h2><h2 /><h3>Pump model</h3><h3 />
Let suppose that the pump within a distribution system is an open system at steady state, whose mass and energy balances are shown below:
<h3>Mass balance</h3>
(1)
(2)
(3)
<h3>Energy balance</h3>
(4)
Where:
- Inlet mass flow, in kilograms per second.
- Outlet mass flow, in kilograms per second.
- Inlet volume flow, in cubic meters per second.
- Outlet volume flow, in cubic meters per second.
- Inlet specific volume, in cubic meters per kilogram.
- Outlet specific volume, in cubic meters per kilogram.
- Pump efficiency, no unit.
- Electric motor power, in kilowatts.
- Inlet specific enthalpy, in kilojoules per kilogram.
- Outlet specific enthalpy, in kilojoules per kilogram.
- Work losses due to friction, in kilowatts.
<h3>Data from steam tables</h3>
From steam tables we get the following water properties at inlet and outlet:
Inlet
,
,
,
, Subcooled liquid
Outlet
,
,
,
, Subcooled liquid
<h3>Calculation of the friction loss in the system</h3>
If we know that
,
,
,
,
and
, then the friction loss in the system is:


The friction loss in the system is 3.480 kilowatts. 
To learn more on pumps, we kindly invite to check this verified question: brainly.com/question/544887