Answer & Explanation:
function Temprature
NYC=[33 33 18 29 40 55 19 22 32 37 58 54 51 52 45 41 45 39 36 45 33 18 19 19 28 34 44 21 23 30 39];
DEN=[39 48 61 39 14 37 43 38 46 39 55 46 46 39 54 45 52 52 62 45 62 40 25 57 60 57 20 32 50 48 28];
%AVERAGE CALCULATION AND ROUND TO NEAREST INT
avgNYC=round(mean(NYC));
avgDEN=round(mean(DEN));
fprintf('\nThe average temperature for the month of January in New York city is %g (F)',avgNYC);
fprintf('\nThe average temperature for the month of January in Denvar is %g (F)',avgDEN);
%part B
count=1;
NNYC=0;
NDEN=0;
while count<=length(NYC)
if NYC(count)>avgNYC
NNYC=NNYC+1;
end
if DEN(count)>avgDEN
NDEN=NDEN+1;
end
count=count+1;
end
fprintf('\nDuring %g days, the temprature in New York city was above the average',NNYC);
fprintf('\nDuring %g days, the temprature in Denvar was above the average',NDEN);
%part C
count=1;
highDen=0;
while count<=length(NYC)
if NYC(count)>DEN(count)
highDen=highDen+1;
end
count=count+1;
end
fprintf('\nDuring %g days, the temprature in Denver was higher than the temprature in New York city.\n',highDen);
end
%output
check the attachment for additional Information
Answer:
Mechanical Engineering
Chemical Engineering
Civil Engineering
Explanation:
I got it from my old homework And I learn those at school ( Thank You For The Points)
Answer:
What's the purpose of tracks going in the red? Having tracks go into the red is surely redundant, I don't see any purpose in having tracks distort ... It just seems like a hang on from the old days of tape, it's something that people who ... be in daws and I'm trying to assemble an alternative I understand the current mixing system. The Dow Jones Industrial Average (DJIA) is a stock index of 30 blue-chip industrial ... Today, the DJIA is a benchmark that tracks American stocks that are ... To calculate the DJIA, the current prices of the 30 stocks that make up the ... the longevity of the Dow serves this purpose better than all other indices.
Explanation:
Answer:
The current through the coil is 2.05 A
Explanation:
Given;
number of turns of the coil, N = 1
radius of the coil, r = 9.8 cm = 0.098 m
magnetic moment of the coil, P = 6.2 x 10⁻² A m²
The magnetic moment is given by;
P = IA
Where;
I is the current through the coil
A is area of the coil = πr² = π(0.098)² = 0.03018 m²
The current through the coil is given by;
I = P / A
I = (6.2 x 10⁻² ) / (0.03018)
I = 2.05 A
Therefore, the current through the coil is 2.05 A