1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
RSB [31]
3 years ago
8

What is the primary water source for a water cooled recovery unit's condensing coll?

Engineering
1 answer:
nataly862011 [7]3 years ago
7 0
A) chilled water from evaporator
You might be interested in
Energy that causes a transfer of heat between marterials
notsponge [240]

Thermal radiation is a form of heat transfer because the electromagnetic radiation emitted from the source carries energy away from the source to surrounding (or distant) objects.

I tried, but I hope this helps :)

4 0
3 years ago
The soil borrow material to be used to construct a highway embankment has a mass unit weight of 107.0 lb/cf and a water content
MrRissso [65]

Answer:

Option D

Explanation:

Given information

Bulk unit weight of 107.0 lb/cf

Water content of 7.3%,=0.073

Specific gravity of the soil solids is 2.62

Specifications

Dry unit weight is 113 lb/cf  

Water content is 6%.

Volume of embankment is 440,000-cy

Borrow material

Dry_{unit,weight}=\frac {bulk_{unit,weight}}{1+water_{content}}=\frac {107}{1+0.073}= 99.72041 lb/cf  

Embankment

Considering that the volume of embankment is inversely proportional to the dry unit weight

\frac {V_{embankment}}{V_{borrow}}=\frac {Dry_{borrow}}{Dry_{embankment}}

Therefore, V_{borrow}=V_{embankment} *\frac {Dry_{embarkement}}{Dry_{borrow}}

V_{borrow}=440,000-cy*\frac {113 lb/cf }{99.72041 lb/cf }= 498594-cy

Therefore, volume of borrow material is 498594-cy

(b)

The weight of water in embankment is found by multiplying the moisture content and dry unit weight.

Assuming that all the specifications are achieved, weight of water in embankment=0.06*113=6.78 lb/cf

Since 1 yd^{3}= 27 ft^{3}

The embankment requires water of  6.78*27*440000= 80546400 lb

Borrow materials’ water will also be 0.073*99.72041=7.27959 lb/cf

Borrow material requires water of 7.27959*27*498594=97998120 lb

Extra water between borrow material and embankment=97998120 lb-80546400 lb=17451720 lb

Unit_{weight}=\frac {17451720}{498594}=35.00186 lb

1 gallon is approximately 8.35 yd^{3} hence

\frac {35.00186 lb/yd^{3}}{8.35}=4.19184 gallons/yd^{3}

That's approximately 4.2 gallons

7 0
3 years ago
For the pipe-fl ow-reducing section of Fig. P3.54, D 1 5 8 cm, D 2 5 5 cm, and p 2 5 1 atm. All fl uids are at 20 8 C. If V 1 5
bonufazy [111]

Answer:

The total force resisted by the flange bolts is  163.98 N

Explanation:

Solution

The first step is to find  the pipe cross section at the inlet section

Now,

A₁ = π /4 D₁²

D₁ =  diameter of the pipe at the inlet section

Now we insert 8 cm for D₁ which gives us A₁ = π /4 D (8)²

=50.265 cm² * ( 1 m²/100² cm²)

= 5.0265 * 10^⁻³ m²

Secondly, we find cross section area of  the pipe at the inlet section

A₂ = π /4 D₂²

D₂ =  diameter of the pipe at the inlet section

Now we insert 5 cm for D₁ which gives us A₁ = π /4 D (5)²

= 19.63 cm² * ( 1 m²/100² cm²)

= 1.963 * 10^⁻³ m²

Now,

we write down the conversation mass relation which is stated as follows:

Q₁ = Q₂

Where Q₁ and Q₂ are both the flow rate at the exist and inlet.

We now insert A₁V₁ for Q₁ and A₂V₂ for Q₂

So,

V₁ and V₂ are defined as the velocities at the inlet and exit

We now insert 5.0265 * 10^⁻³ m² for A₁ 5 m/s for V₁ and 1.963 * 10^⁻³ m² for A₂

= 5.0265  * 5 = 1.963 * V₂

V₂ = 12.8 m/s

Note: Kindly find an attached copy of the part of the solution to the given question below

8 0
2 years ago
Consider the circuit below where R1 = R4 = 5 Ohms, R2 = R3 = 10 Ohms, Vs1 = 9V, and Vs2 = 6V. Use superposition to solve for the
VladimirAG [237]

Answer:

The value of v2 in each case is:

A) V2=3v for only Vs1

B) V2=2v for only Vs2

C) V2=5v for both Vs1 and Vs2

Explanation:

In the attached graphic we draw the currents in the circuit. If we consider only one of the batteries, we can consider the other shorted.

Also, what the problem asks is the value V2 in each case, where:

V_2=I_2R_2=V_{ab}

If we use superposition, we passivate a battery and consider the circuit affected only by the other battery.

In the first case we can use an equivalent resistance between R2 and R3:

V_{ab}'=I_1'R_{2||3}=I_1'\cdot(\frac{1}{R_2}+\frac{1}{R_3})^{-1}

And

V_{S1}-I_1'R_1-I_1'R_4-I_1'R_{2||3}=0 \rightarrow I_1'=0.6A

V_{ab}'=I_1'R_{2||3}=3V=V_{2}'

In the second case we can use an equivalent resistance between R2 and (R1+R4):

V_{ab}''=I_3'R_{2||1-4}=I_3'\cdot(\frac{1}{R_2}+\frac{1}{R_1+R_4})^{-1}

And

V_{S2}-I_3'R_3-I_3'R_{2||1-4}=0 \rightarrow I_3'=0.4A

V_{ab}''=I_3'R_{2||1-4}=2V

If we consider both batteries:

V_2=I_2R_2=V_{ab}=V_{ab}'+V_{ab}''=5V

7 0
3 years ago
A heat engine receives heat from a heat source at 1453 C and has a thermal efficiency of 43 percent. The heat engine does maximu
xxMikexx [17]

Answer:

a) 1253 kJ

b) 714 kJ

c) 946 C

Explanation:

The thermal efficiency is given by this equation

η = L/Q1

Where

η: thermal efficiency

L: useful work

Q1: heat taken from the heat source

Rearranging:

Q1 = L/η

Replacing

Q1 = 539 / 0.43 = 1253 kJ

The first law of thermodynamics states that:

Q = L + ΔU

For a machine working in cycles ΔU is zero between homologous parts of the cycle.

Also we must remember that we count heat entering the system as positiv and heat leaving as negative.

We split the heat on the part that enters and the part that leaves.

Q1 + Q2 = L + 0

Q2 = L - Q1

Q2 = 539 - 1253 = -714 kJ

TO calculate a temperature for the heat sink we must consider this cycle as a Carnot cycle. Then we can use the thermal efficiency equation for the Carnot cycle, this one uses temperatures:

η = 1 - T2/T1

T2/T1 = 1 - η

T2 = (1 - η) * T1

The temperatures must be given in absolute scale (1453 C = 1180 K)

T2 = (1 - 0.43) * 1180 = 673 K

673 K = 946 C

8 0
3 years ago
Other questions:
  • Which solution causes cells to shrink
    13·1 answer
  • Steam flows at steady state through a converging, insulated nozzle, 25 cm long and with an inlet diameter of 5 cm. At the nozzle
    11·1 answer
  • If you know that the change in entropy of a system where heat was added is 12 J/K, and that the temperature of the system is 250
    10·1 answer
  • Question 5
    7·2 answers
  • If the resistance reading on a DMM'S meter face is to 22.5 ohms in the range selector switch is set to R X 100 range, what is th
    5·1 answer
  • A student proposes a complex design for a steam power plant with a high efficiency. The power plant has several turbines, pumps,
    6·1 answer
  • An analog baseband audio signal with a bandwidth of 4kHz is transmitted through a transmission channel with additive white noise
    14·1 answer
  • Why does my delivery date keep changing on my tesla model 3
    13·1 answer
  • Does anyone know how to fix this? It's a chromebook and project where I have to try to fix it​
    9·1 answer
  • A hammer can be used to see how a mineral breaks. If you observe square chunks of the mineral when broken, what can you conclude
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!